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Watershed-scale landscape analysis includes many disciplines, including ecological, hydrological, and
geographical sciences. e recent proliferation of free optical satellite imagery (FOSI) has changed the
possibilities for the monitoring of environmental change at local and global scales. Many reviews exist
for discipline-specific remote sensing applications; however, this article seeks to highlight the rapidly
growing archive of FOSI and applied tools that can be used by all levels of users. Herein, ten techniques
and eight applications of FOSI are reviewed, along with the specifications and limitations of various
sources of FOSI. Although this review focuses on Western Canada, the democratization of FOSI is
globally relevant, and the objective is to explain basic concepts via figures and reference materials to
help summarize this rapidly changing field. 
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Remote sensing is the science of obtaining information about an object from a distance. is informa-
tion can be collected from terrestrial, aquatic, aerial, or satellite platforms. Optical imaging sensors
aboard these platforms record image data consisting of emitted or reflected electromagnetic energy.
Since 2008, the availability of free optical satellite imagery (FOSI) has grown exponentially since the
United States Geological Survey (USGS) first opened its image archives (Woodcock et al., 2008). As
such, the Earth is currently being imaged many times per day at a variety of spatial resolutions
(Malenovský et al., 2012; Roy et al., 2014). e availability of FOSI has enabled the development of
free online visualization tools (see Appendix A), free open source remote sensing soware (see
Appendix B), and free analysis-ready remote sensing products (see Appendix C). e abundance of
FOSI has empowered natural resource managers, researchers, and others to increase, and ultimately
improve, the monitoring and quantification of watershed-scale environmental change.

Review articles have addressed vegetation mapping (Xie et al., 2008), land cover classification (Phiri &
Morgenroth, 2017), forest inventories (White et al., 2016), and large area mapping techniques (Gómez
et al., 2016; Hansen & Loveland, 2012). is article focuses on FOSI and aims to provide an overview
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of: 1) fundamental concepts; 2) common datasets; 3) data portals; 4) processing techniques; and 5)
applied examples of watershed-scale remote sensing. e objective is to provide readers new to satel-
lite remote sensing with a comprehensive reference guide explained in plain language, and to pro-
vide advanced users with a helpful compilation of reference materials.  

is section provides a synthesis of fundamental concepts in Earth observation (EO) remote sensing
science, with a focus on passive optical sensors that measure and record energy emitted from
external sources (typically the sun). Earth observation satellites have near-polar sun-synchronous
orbits, meaning they pass from north to south, and then south to north again on a slight “near-polar”
angle. eir orbits take about 90 minutes to complete and revisit times may take up to 16 days. e
viewing angle (aka, look angle) of the satellite sensor can be straight down (nadir), side-looking,
back-looking, or front-looking. Most platforms equipped with high-resolution sensors can change
their look angle between acquisitions (usually < 20° from nadir), whereas most FOSI sensors have a
fixed look angle (typically nadir). Nadir imagery has the advantage of constant image geometry,
whereas imagery acquired at different angles can have distortions, such as seeing different sides of
the same object.

While conventional digital cameras record red, green, and blue light to make RGB composite images,
optical satellite sensors can record single (panchromatic), multiple (multispectral), or many (hyper-
spectral) spectral bands. ese oen include visible (VIS), near infrared (NIR), short-wave infrared
(SWIR), and thermal infrared (TIR) wavelengths. High pixel values of these wavelengths indicate a
high reflectance and low absorption. Although multispectral bands are used for many purposes;
Table 1 lists common interpretations. 

Table 1. Common multispectral band names and their interpretations

Note: Not all sensors have these bands, and not all bands are in this table. Source: Modified from USGS (2017a)
and Geospatial Innovation Facilities (2008).

Satellite images can have high (< 10 m), medium (10 to 100 m), or low (> 100 m) spatial resolutions,
although these definitions can vary. Spatial resolution is oen a compromise between the swath
(width) of the scene, data storage, and revisit times. For example, high-resolution sensors commonly
image a small portion of the Earth, whereas low-resolution sensors commonly view a large portion.
Some low-resolution sensors image the entire planet more than once per day, whereas high-resolu-
tion sensors change their look angle to rapidly image targeted sites.
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Fundamental FOSI 
Concepts

Band Name Common Interpretations

Panchromatic Usually samples visible light at a higher resolution

Ultra-Blue Shallow water, suspended sediments, chlorophyll concentrations, algae blooms, and aerosols;
also known as the coastal or aerosol band 

Blue Shallow water, land cover, and deciduous/coniferous, sensitive to atmospheric scatter

Green Emphasizes the true colour of vegetation

Red Discriminates vegetation and chlorophyll absorption for vegetation health

Red Edge Exploits the sharp contrast between red and near infrared

NIR Emphasizes biomass content and shorelines

SWIR1 Soil and canopy moisture and thin cloud penetration 

SWIR2 Soil and canopy moisture and thin cloud penetration

Cirrus Detection of cirrus clouds

TIR ermal mapping, soil moisture, cloud mapping

http://confluence-jwsm.ca/index.php/jwsm/article/view/18
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Optical satellite sensors record electromagnetic energy for every pixel of an image. ese raw pixel
values, known as digital numbers (DN), are unit-less until post-processing corrections are made. e
sensitivity of the instrument depends on the radiometric resolution of the sensor. For example, 8-bit
radiometry can store DN values between 0 and 255 (per pixel, per band), whereas higher sensitivity
sensors may have 16-bit radiometry and be able to store values between 0 and 65,535. e wave-
length ranges for the same band (e.g., red) oen vary between sensors. High spectral resolution sen-
sors have narrow wavelength ranges, whereas lower spectral resolution sensors have wide wavelength
ranges, and are thus more difficult to interpret due to wider spectral influences within a given pixel.

Spectral radiance is a physical measurement of electromagnetic radiation that is calculated by
applying sensor- and band-specific gain and offset values to DN values. Satellite data providers
include these values in the metadata of each image. Top of Atmosphere (TOA) reflectance is another
correction that accounts for the source of incoming radiation. However, to best approximate the true
reflectance of an object from space, TOA values are corrected for atmospheric distortions using
other satellite data or weather models. ese corrections estimate surface reflectance (SR) values,
which are the best approximation of true surface reflectance properties and should be used in pro-
jects that require analysis over time or between sensors.  

Since 1958, more than 500 EO and meteorological satellites have been launched into orbit with more
coming in the next few decades (World Meteorological Organization, 2016). Only a minority of
these satellites provide FOSI that is useful at watershed scales. is section briefly lists commonly
used low-, medium-, and high-resolution sources of FOSI.

Figure 1. e active lifetimes of EO satellites launched since 1972 and their respective
imaging sensors. Light and dark grey boxes represent medium- and low-resolution
sensors, respectively. Comments regarding sensor failures are found in the boxes of
affected sensors, with additional commentary in Appendix D and Appendix E.
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Continent- or planetary-scale projects requiring daily acquisitions may employ low-resolution FOSI
(e.g., global wildfire detection, coarse global land cover, etc.). e most widely used low-resolution
sensors are AVHRR 1-3, MODIS, and VIIRS (Figure 1). e AVHRR holds the longest record, though
the pair of MODIS sensors offer much higher resolution daily imagery (Lasaponara & Lanorte, 2012).
For more information on these satellite sensors see Appendix D.

Local or watershed-scale projects with sparse temporal acquisitions may employ medium-resolution
FOSI (e.g., 30 m land cover classification, forest health studies, etc.). Six sensors provide the majority
of medium-resolution FOSI: Landsat’s MSS, TM, ETM+, and OLI sensors, Terra’s ASTER sensor, and
Sentinel’s MSI sensors. Some of these sensors are deployed aboard multiple satellite platforms
(Figure 1). In the last few years, Sentinel’s MSI sensors have provided a complementary dataset to the
Landsat Program with an improved 10-20 m resolution (versus 15-30 m for Landsat) and a five-day
repeat interval, though no thermal infrared bands are present (Figure 2). 

FOSI is increasingly common in watershed-scale landscape analysis, and satellite image archives are
becoming easier to access. Figure 3 demonstrates the quantity of medium-resolution FOSI currently
available over Vancouver, British Columbia, Canada. More than 2,000 FOSI images have been
acquired since 1972, with a notable increase in the last three years. For more information on these
satellites and sensors, see Appendix E. While there are currently no sources of high-resolution FOSI,
continued trends in sensor technologies and the relative costs of acquisitions suggest this will likely be
available in the not too distant future. Meanwhile, free high-resolution data of specific areas of Earth
are available through many basemap products (e.g., Google Earth, Bing, and Nokia Here) and through
the Planet Explorer (see Appendix A).

Four data portals that provide access to full resolution satellite imagery include: 1) USGS Earth
Explorer; 2) European Space Agency (ESA) Copernicus Data Hub; 3) National Oceanic Atmospheric
Administration (NOAA) Comprehensive Large Array-Data Stewardship System; and 4) National
Aeronautics and Space Administration (NASA) Earthdata Search. e USGS Earth Explorer data
portal provides access to imagery from many satellite sensors (United States Geological Survey, 2017a)
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Figure 2. Comparison of bands measured by low- and medium-resolution FOSI satellite sensors. Note: some values have been altered
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not limited to medium-resolution images from the Landsat, ASTER, EO-1, and Sentinel-2 satellite
sensors, and low-resolution images from the MODIS and VIIRS sensors (the USGS [2017c] GloVis
portal has similar functionality). e Copernicus Open Access Hub provides access to imagery from
the Sentinel-1, -2, and -3 satellites (European Space Agency, 2017a). e Comprehensive Large Array-
Data Stewardship System (CLASS) website is an excellent resource for AVHRR and VIIRS imagery
(National Oceanic and Atmospheric Administration, 2017a). Earthdata Search is a NASA data portal
that provides access to a wide variety of full-resolution imagery. Many satellite datasets are available
via more than one data portal, and users tend to develop preferences. e abundance of data available
through these portals has sparked the creation of many powerful soware tools, such as free online
visualization tools (see Appendix A), free open source remote sensing soware (see Appendix B), and
free analysis-ready remote sensing products (see Appendix C).

e following section is an introduction to common methods used in the transformation of FOSI
into analysis-ready products. e following paragraphs summarize techniques for a general audi-
ence, but also serve as a collection of references for further reading and a quick-access guide for
intermediate users.

Image Geometry
Georeferencing is the anchoring and re-projection of a spatial dataset to a geographic coordinate sys-
tem. Satellite data products are generally georeferenced by the provider. In some cases, the georeferenc-
ing of a product, especially older datasets, may not be accurate enough for the needs of a project and
additional georeferencing is required. Orthorectification is the process of correcting a georeferenced
image for distortions caused by the terrain or look angle. A digital elevation model (DEM) or Digital
Surface Model (DSM) is required to orthorectify images. e resulting ortho-image will have a con-
stant scale independent of elevation. FOSI are oen orthorectified by the data provider. If the imagery
resolution is less than the height of an object on the ground, then orthorectification requires a DSM,
which accounts for the height irregularities of a topographic surface. 
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Composite Imagery 
Satellite images are commonly interpreted with the naked eye with no further computational analysis
required. Composite images blend three spectral bands into a single red-green-blue image (RGB) facil-
itating visual interpretation. Different combinations of bands may lead to different interpretations of
the image. Depending on the application or topic of interest, pre-set recommendations of band combi-
nations exist for most satellite sensors (see Table 2). For example, combining bands 7, 5, and 4 (SWIR2,
NIR, RED) from Landsat-8 OLI and assigning them to the red-green-blue visualization channels re-
spectively enhances healthy vegetation, which will appear bright green. Healthy vegetation reflects NIR
and absorbs the SWIR and RED wavelengths. Pansharpening is a technique that uses higher resolution
panchromatic images to cartographically sharpen lower resolution multispectral bands. 

Table 2. Common band combinations for the visualization 
of multispectral composite imagery

Note: Modified from Geospatial Innovation Facilities (2008) and 
Butler (2013) 

Spectral Indices and Ratios
Spectral indices and ratios are calculations between bands that reveal reflectance properties of objects
that may be difficult to see otherwise. Common indices include the normalized difference vegetation
index (NDVI) and the normalized difference moisture index (NDMI), but many more exist (see
Table 3). e normalization process is a simple yet effective way to enhance band contrasts with a
scaled output between -1 and +1. Spectral indices can be classified using thresholds (e.g., an NDVI
greater than 0.4 is generally considered forest). Spectral ratios, or band ratios, can be equally informa-
tive when they are applied for the detection of water and land cover types, and oen for glacier detec-
tion (Table 3). Ratios from different spectral regions enhance important land cover differences (e.g.,
rock, water, and vegetation), whereas ratios from similar spectral regions enhance subtle land cover dif-
ferences (e.g., rock type or vegetation type). 

Image Transformations
Two commonly used image transformations are Principal Component Analysis (PCA) and Tasseled
Cap transformation (TC). e PCA statistically transforms multispectral imagery into groups of un-
correlated data and discards redundancy in multispectral images (Loughlin, 1991). is technique is
image specific and reduces data dimensionality while increasing efficiency when classifying land cover.
e TC transformations convert multispectral image bands using validated calibration coefficients that
are sensor specific (Table 3). e TC products represent brightness, greenness, and wetness and can be
combined in composite images revealing information about land cover (Crist & Cicone, 1984). 

Image Classification
FOSI can be grouped into classes based on spectral and geometric properties. Classification methods
can be unsupervised, supervised, or object-oriented (Phiri & Morgenroth, 2017). Unsupervised classifi-
cation techniques group pixels based on similar spectral values with limited user input. Parametric
(e.g., K-means, ISO) and non-parametric (e.g. random forests, neural networks) clustering algorithms
can be used in unsupervised classification. ese require cautious interpretation, and they are best
suited for areas where little is known about the ground conditions. Alternatively, supervised classifica-
tions rely on user input data, where users define classes of interest and the soware classifies similar
pixels using spectral statistics (e.g., maximum likelihood, minimum distance). Supervised classification
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RGB Band Combination Combination Name

RED, GREEN, BLUE True Colour

NIR, RED, GREEN Near Infrared Vegetation

SWIR2, NIR, RED False Colour Vegetation

SWIR1, NIR, BLUE False Colour Agricultural

SWIR2, RED, BLUE False Colour Geological

RED, GREEN, COASTAL False Colour Bathymetric

SWIR2, SWIR1, RED False Colour Urban

http://confluence-jwsm.ca/index.php/jwsm/article/view/18
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requires knowledge of ground conditions or higher resolution data to identify the classes of interest.
Object-oriented (or object-based) image analysis uses spectral and contextual metrics of predefined
spatial groupings/clusters (Heurich et al., 2010). Object classes are derived from the shape, size, value
range, and texture of pixel groupings/clusters. 

Change Detection
Change detection is achieved using time-separated imagery (Hansen & Loveland, 2012). Manual flick-
ering or swiping between images in a geographic information system (GIS) environment can oen lead
to qualitative interpretations of change for the occasional user or for inter-sensor comparison. Other
techniques detect change between images and classify the results semi-automatically. For example, two
NDVI images can be differenced to identify forest gain or loss. Other change-detection methods could
focus on the changes of land cover classes between images. 

Time-Series Analysis
With dense time-separated images, or stacks, time-series analysis can efficiently represent trends over
large areas. Regression analysis, harmonic functions, and residual functions can represent the annual,
seasonal, and day-month variations of a dataset (Kuenzer et al., 2015). Calculating time-series statistics
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Index or Ratio Formula Description and Original
Reference

Normalized Difference
Vegetation Index

Vegetation and biomass index
(Rouse et al., 1973)

Normalized Difference
Water Index

Water body index 
(McFeeters, 1996) 

Modified Normalized
Difference Water Index

Improved water body index 
(Xu, 2006)

Automated Water
Extraction Index

Improved water body index
(Feyisa et al., 2014)

Normalized Difference
Moisture Index

Canopy and soil moisture index
(Gao, 1996)

Normalized Burn Ratio Burn severity index 
(Key & Benson, 1999)

Differenced Normalized
Burned Ratio

NBR relative to pre-fire
conditions (Key & Benson, 2006)

Normalized Difference
Snow Index Snow index (Hall et al., 1995)

Enhanced Vegetation
Index

Enhanced vegetation index
(Huete et al., 1997)

Tasseled Cap Wetness Pixel wetness 
(Crist & Cicone, 1984)

Tasseled Cap Greenness Pixel greenness 
(Crist & Cicone, 1984)

Tasseled Cap Brightness Pixel brightness 
(Crist & Cicone, 1984)

Disturbance Index Forest disturbance mapping
(Healey et al., 2005)

Red Green Index Detection of red attack trees
(Coops et al., 2006)

Red Band Ratio Forest, water, and cropland
(Jordan, 1969)

Glacier Band Ratio Glacier area delineation 
(Hall et al., 1987)

Table 3. Selected spectral indices and ratios with formulas

Note:  B = BLUE, G = GREEN, R = RED, RE = RED EDGE, N = NIR, S1 = SWIR1, S2 = SWIR2, C = Sensor specific band
coefficient, R = Standard deviation of a pixel relative to the mean of the image
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over an image stack can demand a large amount of computation, though with new tools (e.g., Google
Earth Engine) time-series analysis over large areas has become much more feasible for users (Gorelick
et al., 2017). For example, by plotting a time series of NDVI values over a region downstream of the
2014 Mount Polley mining incident in British Columbia, Canada, forest cover removal becomes evi-
dent when the seasonal cycle of Landsat 8 OLI derived NDVI values is removed (Figure 4). 

Figure 4. Time-series analysis of Landsat 8 OLI NDVI values for the downstream area affected by the
Mount Polley mining spill near Likely, British Columba (52.53°N, 121.59°W). is plot demonstrates
that the period from 2013–2014 has a seasonal fluctuation of NDVI values indicating strong vegetation,
such as a forest. During the 2014 calendar year, the forest was destroyed by a mining incident, and the
vegetation has yet to recover. 

Optically Derived Digital Elevation Models
FOSI from two or more different look angles can be combined to create a DEM of the visible surface of
the Earth, including objects that obstruct the ground (Toutin, 2001). For example, the ASTER sensor,
onboard the Terra satellite, captures both nadir and back-looking images, allowing the computation of
DEMs from every repeat pass. ASTER DEMs have been combined as a free global 30 m-resolution
DEM (Tachikawa et al., 2011). More recently, high-resolution optical stereo imagery from high-resolu-
tion satellite sensors have been used to create free high-resolution DEMs using free stereogrammetry
soware (Intelligent Robotics Group, 2017) for many areas of the circumpolar Arctic (Polar Geospatial
Center, 2017) and Himalaya (Shean, 2017) regions. 

Velocity Measurement
Objects (rocks, slopes, or identifiable features) that move between time-separated images can be
tracked using manual or automatic methods. Automated approaches use statistical methods to match
pixels within a search neighbourhood to create velocity vectors. For instance, the velocity of river ice
on the Mackenzie River was measured to an accuracy of ~0.07 m/s using near-simultaneous image ac-
quisitions (Beltaos & Kääb, 2014). Pixel-tracking soware packages have been developed, for example
IMCORR (Scambos et al., 1992), CIAS (Kääb & Vollmer, 2000), VisiCORR (Dowdeswell & Benham,
2003), and COSI-Corr (Leprince et al., 2007). 

Cloud-Free Mosaics
Identifying and removing clouds from multispectral optical imagery is an important task, especially for
the creation of cloud-free mosaics. Most cloud-masking algorithms have difficulty over bright targets,
such as beaches, snow, and ice (e.g., Foga et al., 2017; Zhu et al., 2015). Best-available-pixel (BAP) tech-
niques filter images for a single pixel using the day of the year, cloud cover, and other parameters to se-
lect the ideal pixel to use in a mosaic (Hermosilla et al., 2015a, 2016; White et al., 2014). Other
techniques do not attempt to choose a best pixel but rather calculate a pixel-value statistic (e.g., mean,
minimum, etc.) based on a stack of candidate images. 
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FOSI has many applications in watershed-scale landscape analysis. Raw or calibrated imagery (e.g.,
DN, TOA, SR), and analysis-ready products provide information about the landscape. For example,
interpretations of the same image as a true colour, NIR false colour, and SWIR false colour com-
posite may differ (Figure 5, A-B). is section provides an overview of applied examples of water-
shed-scale remote sensing.

Figure 5. Landsat 8 OLI imagery near Cache Creek, British Columbia, acquired September
12, 2017. e upper le of the image is the Elephant Hill wildfire (black outline) and the main
river is the ompson River. A) True colour (R, G, B) composite. B) False colour (SWIR1, NIR,
R) composite. C) Differenced normalized burn ratio (dNBR), where higher values indicate
greater burn intensities. D) Normalized difference vegetation index (NDVI), where values
greater than 0.4 are highly productive vegetation. E) Modified normalized difference water
index (mNDWI) to extract water outlines. F) ISO unsupervised classification into 10 classes.

Wildfire
Many low-resolution satellites have thermal-anomaly products to identify active wildfires around the
world. MODIS Terra and Aqua (Justice et al., 2002; Kaufman et al., 1998) and Suomi NPP VIIRS
(Schroeder et al., 2014) are commonly used for wildfire detection. e Sentinel-3A SLSTR sensor has
demonstrated utility for this application (Wooster et al., 2012). Limitations include cloud cover, low
spatial resolution, and the timing of image acquisition. e Normalized Burn Ratio (NBR) and other
techniques are operationally used to map fire perimeters, fire intensity, and unburned fuels within a fire
boundary (Figure 5, C). Medium-resolution satellites are oen used to map the fire boundary and burn
intensity at higher spatial and temporal resolutions (Hawbaker et al., 2017). 

Forest
Generally, the NDVI is a good first approximation for forest cover mapping (Figure 5, D). Most notably,
global forest cover change has been mapped from Landsat TM, ETM+, and OLI imagery for the period
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of 2000 to 2016 at 30 m resolution (see Appendix C). e freely available Global Forest Change prod-
uct over British Columbia (Hansen et al., 2013), indicates a total of 85,900 km2 has been lost (including
wildfire and forestry) and 43,800 km2 has been gained, for a net forest cover change of -42,100 km2 be-
tween 2000 and 2015. Forest disturbance, change attribution, and recovery mapping are common ap-
plications of FOSI (Hermosilla et al., 2015b; Zhao et al., 2016; Zhu et al., 2012). Researchers have also
endeavoured to associate changes in forest health to changes observed across the spectrum of satellite-
based remote sensing wavelengths (Meng et al., 2016). Recent studies have shown evidence for the ac-
curate mapping of grey- (Hart & Veblen, 2015) and green- (Foster et al., 2017) attack spruce stands
using spectral indices, while others have shown evidence for the use of thermal remote sensing (Hais &
Kučera, 2008). Remaining challenges for FOSI include tree species identification, canopy height mod-
els, and forest density and volume measurements.

Water
Because of the importance of freshwater on Earth, there have been considerable efforts to map water
bodies over large areas and track changes over time (Donchyts et al., 2016; Pekel et al., 2016). While syn-
thetic aperture radar (SAR) sensors are particularly well suited for the rapid mapping of water (e.g., dur-
ing floods), FOSI can also be leveraged to map surface water extents (Xu, 2006). For instance, the
mNDWI provides a simple delineation of water bodies (Figure 5, E) with values generally greater than
0.4. Limitations include the mapping of smaller, turbid, seasonal, and shaded water bodies. FOSI can also
be used to map water during floods in ideal cloud-free imaging conditions (Olthof, 2017). Other useful
applications include the tracking of water quality, such as the mapping of algae blooms and chlorophyll
in lakes (Brezonik et al., 2005) and oceans (Hu, 2009), cyanobacteria (Page et al., 2018), turbidity in
small lakes (Lacaux et al., 2007), and the bathymetry of shallow clear waters (Knudby et al., 2016).

Wetlands
Advanced techniques such as SAR-Optical fusion (Bourgeau-Chavez et al., 2015), Classification Tree
Analysis (CTA), and Stochastic Gradient Boosting (SGB) (Baker et al., 2006) have shown success in
mapping wetlands. However, mainly due to their seasonal variability, manual interpretation may be
favoured for small areas using TC transformations (Fickas et al., 2016). Object-oriented image analysis
has shown to have high accuracy for detecting wetlands larger than two acres (Frohn et al., 2009).

Snow and Ice
Mapping glaciers, snow-covered area, and other cryospheric parameters can be done from multispec-
tral optical data for local (e.g., Bevington & Copland, 2014) or regional studies (Bolch et al., 2010; Kääb
et al., 2010). Landsat GoLive is a freely available global glacier velocity dataset (National Snow and Ice
Data Center, 2017). Snowline elevation can be calculated from FOSI (Parajka et al., 2010) and used for
hydrological and ecological applications (Verbyla et al., 2017). Using FOSI, long-term changes in cycli-
cal (seasonal) ice events can be monitored for freshwater lakes to understand climate-related changes
occurring within watersheds and their ecosystems (Brown & Duguay, 2012; Latifovic & Pouliot, 2007). 

ermal Imagery
Satellite systems such as Landsat, MODIS, and ASTER are outfitted with TIR sensors, which collect
TOA radiance. ese measurements are the result of emitted radiance from the Earth’s surface and ra-
diance fluxes from the atmosphere (Weng, 2009). In order to obtain land surface temperatures (LST),
corrections must be made, and Plank’s Law must be used to convert radiance values to brightness tem-
peratures (Schmugge et al., 1998). On Landsat 8, bands 10 and 11 are TIR bands, which measure LST at
100 m resolution, however, they are resampled to 30 m to match the other multispectral bands. Due to
the longer wavelength of the thermal infrared bands, atmospheric scattering is less influential, and im-
agery can be acquired at night. ese TIR bands are used to study trends in Earth surface temperatures,
identify wildfires and thermal anomalies, investigate cold-air drainage, and track water temperatures. 

Soil Moisture and Drought
Advances in EO technology have provided substantial improvements in the ability to map soil mois-
ture over the past several decades, particularly soil moisture retrieval from microwave observations
(not FOSI), such as the low resolution Soil Moisture Active Passive (SMAP) and the Soil Moisture and
Ocean Salinity (SMOS) sensors (Peng & Loew, 2017). In terms of FOSI, a linear relationship exists be-
tween SWIR reflectance and soil moisture (r2 = 0.698, Sadeghi et al., 2017). Other studies indicated that
the SWIR reflectance is sensitive to vegetation water content (Yilmaz et al., 2008).
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Land Cover
Land cover classification was one of the earliest uses of satellite imagery (e.g., Anderson et al., 1976;
Figure 5, F) and multiple classification techniques are available (Phiri & Morgenroth, 2017). e evolu-
tion of land cover over time is a topic of extensive research (Zhu & Woodcock, 2014). Habitat suitabil-
ity and change is an important application of optical imagery in the field of ecology (e.g., Hansen et al.,
2001). Natural hazards and geohazards, such as landslides and earthquakes, can also be mapped from
satellite imagery (Kargel et al., 2016).

e watershed-scale research community has embraced the integration of FOSI. Figure 6 shows aca-
demic publications with key satellite sensors in the research article title (Web of Knowledge, 2017).
In this Figure, publications in the 70s and 80s are low (< 100 y-1), whereas the trend in publications
since then is nearly exponential. In 2016, the total exceeds 3,000 peer-reviewed publications. 

Figure 6. e number of academic publications per year with the common name for the satellite sensor
in the title (Web of Knowledge, 2017)

It is in the context of the rapid democratization of satellite remote sensing that this article seeks to
bridge academic literature for applied watershed-scale landscape analysts and serve as a compendium,
or starting point, for the effective application of FOSI. is article summarizes the fundamental con-
cepts of FOSI applied in watershed-scale analysis at low- and medium-resolutions; describes com-
monly used data sources and data portals; explains many FOSI processing techniques; and summarizes
a variety of applied examples for watershed-scale analysis. Although cloud cover, night, smoke, steep
terrain, atmospheric absorption, and other obstructions hinder FOSI, an understanding of these speci-
fications and limitations enables the implementation of FOSI in combination with other methods (e.g.,
fieldwork, modelling, aerial remote sensing). Above all, applied satellite remote sensing requires the
union of operational needs with appropriate FOSI products and techniques. Despite the far reaching
benefits of FOSI, dicussions of returning to a for-profit system persists in the USGS (Popkin, 2018).

e authors would like to thank Robin Pike for his enthusiasm and editorial insights throughout the
development of this manuscript, as well as the three anonymous reviewers who provided careful edits
that greatly improved the accuracy, clarity, and flow of the manuscript. Finally, the authors express
sincere gratitude to the providers of free optical satellite imagery and the developers of free and open
source remote sensing soware for their thankless efforts, which this review merely describes.
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Free Online Visualization Tools

Notes: Parameters: G = Global; FA = Full Archive, AA = Annual Archive; CR = Compressed Resolution, FR = Full-Resolution; TC = True Colour, 
FC = False Colour, CC = Custom Composite; GD = Full Geotiff Download, CD = Compressed Image Download, ND = No Download; T = Timelapse
Tool, M = Movie Export; $ = Additional Pay Features. Sensors: LS = Landsat Archive, S1 = Sentinel-1, S2 = Sentinel-2, S3 = Sentinel-3, MOD = MODIS, 
ES = Envisat Meris, PV = PROBAV, VIIRS = Suomi, PS = PlanetScope, RE = RapidEye
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Appendix A

Webpage Parameters Sensors Coverage Description Reference

LandsatLook G/FA/CR/FC/CD/T LS 1972–2018 USGS platform to view
imagery

(United States Geological Survey, n.d.-a)

Sentinel2Look G/FA/CR/FC/CD/T S2 2015–2018 USGS platform to view
imagery

(United States Geological Survey, n.d.-b)

Google Earth Engine
Explorer

G/FA/FR/CC/GD LS/MOD 1984–2018 Google platform to view
and process imagery

(Google, n.d.-a)

Google Timelapse G/AA/CR/TC/ND/T LS 1984–2016 Global Timelapse (Google, n.d.-b)

Google Timelapse
Editor

G/AA/CR/TC/ ND/T LS 1984–2016 Customization tools for
Google Timelapse

(Carnegie Mellon Create Lab, n.d.)

Sentinel Hub
Playgound

G/FA/FR/CC/CD S2/LS/MOD 2013–2018 ESA platform to view
imagery

(European Space Agency, n.d.-a)

EO Browser G/FA/FR/CC/GD/$ S1/S2/S3/LS/
MOD/ES/PV

2013–2018 ESA platform to view
imagery

(European Space Agency, n.d.-b)

NASA Worldview G/FA/FR/CC/GD/T/M MOD/VIIRS 2003–2018 NASA platform to view
imagery

(National Aeronautics and Space
Administration, n.d.-a)

RemotePixel G/FA/FR/CC/GD/T/M LS/MOD/S2 2013–2018 Independent Canadian
platform for searching
and visualizing imagery

(Sarago, n.d.)

Planet Explorer G/FA/CR/TC/ND/T/$ PS/RE/LS/S2 2010–2018 Commercial platform to
view global 3 m mosaics

(Planet, n.d.)

http://confluence-jwsm.ca/index.php/jwsm/article/view/18
http://doi.org/10.22230/jwsm.2018v2n2a2
https://landsatlook.usgs.gov/
https://landsatlook.usgs.gov/sentinel2
https://explorer.earthengine.google.com
https://earthengine.google.com/timelapse/
http://timemachine.cmucreatelab.org/wiki/earthenginetoureditor
http://apps.sentinel-hub.com/sentinel-playground
https://apps.sentinel-hub.com/eo-browser/
https://worldview.earthdata.nasa.gov
https://worldview.earthdata.nasa.gov
https://remotepixel.ca
https://www.planet.com/explore


Free and Open Source Remote Sensing Soware

Free Remote Sensing Products
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Name Description Reference

QGIS GIS soware with raster processing capabilities (QGIS Development Team, 2012)

QGIS and Semi-Automatic
Classification (SCP) Plugin

QGIS plugin to search, download, process, and classify satellite imagery (Congedo, 2017)

ESA SNAP Toolbox Fully functional remote sensing capabilities for optical and radar imagery (European Space Agency, 2017b)

Google Earth Engine Code Editor Cloud-based coding platform for processing FOSI at global scales (Gorelick et al., 2017)

SAGA GIS soware with raster processing capabilities (Conrad et al., 2015)

GRASS GIS soware with raster processing capabilities (Neteler et al., 2012)

OTB Tools for processing of remote sensing images (Christophe et al., 2008)

Product Name Dataset Description Reference

Global Forest Cover Change View and download global 30 m resolution forest cover data (2000–2016) (Hansen et al. 2013)

Global Surface Water Explorer View and download global 30 m resolution water occurrence (1984–2015) (Pekel et al., 2016)

Satellite Forest Monitoring in
Canada

View Canadian 30 m resolution forest cover change attribution (1985–2011) (Hermosilla et al., 2015a, 2015b,
2016; White et al., 2014)

Global Land Cover “Glob30” View and download global 30 m land cover classes (2000 & 2010) (Chen et al., 2015)

Global Land Cover Facility Useful collection of many global land cover datasets (e.g., Hansen et al., 2000)

MODIS and VIIRS Active Fire for
Google Earth

View and download global active fire-mapping layers (Justice et al., 2002; Kaufman et al.,
1998)

ASTER GDEM Download a global 30 m DEM (Tachikawa et al., 2011)

ALOS World 3D Download global 30 m DEM (Takaku et al., 2014)

ArcticDEM View and download circumpolar high-resolution DEM (Polar Geospatial Center, 2017)

Global Land Ice Velocity Extraction
from Landsat 

Download glacier velocity vectors (National Snow and Ice Data
Center, 2017) 

Global Land Ice Measurements
from Space (GLIMS)

View and download glacier outlines (Raup et al., 2007)

Appendix B

Appendix C
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Low-Resolution Satellite Sensors

Note: Spectral bands are represented as broad categories; see Figure 2 for detailed spectral ranges. 
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Satellite Sensor, Agency Spectral Bands 
(Spatial
Resolution) 

Revisit, Swath, 
Radiometric
Resolution

Operational Lifetime Comments and References

TIROS-N
NOAA 6-19
MetOp A
and B

Advanced Very
High-Resolution
Radiometer
(AVHRR 1-3)
NASA/NOAA

VIS (1,000 m) 
NIR (1,000 m) 
TIR (1,000 m)

Daily, 
2,900 km, 
10-bit

AVHRR-1 Oct 1978–Sep 1991 
AVHRR-2 Aug 1981– May 2007
AVHRR-3 May 1998– present

e AVHRR sensors represent a highly
accessible data collection system with
applications in meteorology, climatology,
oceanography, and land surface processes.
e AVHRR is an important resource in
weather forecasting (National Oceanic and
Atmospheric Administration, 2017b).

Terra and
Aqua

Moderate
Resolution
Imaging
Spectroradio-
meter (MODIS)
NASA

VIS (250/500 m) 
NIR (1,000 m) 
SWIR (1,000 m) 
TIR (1,000 m)

Daily, 
2,330 km, 
12-bit

MODIS Terra Dec 1999– present
MODIS Aqua May 2002– present

e MODIS 36-channel sensor was
designed to provide daily coverage of land,
ocean, and atmospheric processes at a
global scale. MODIS represents an
important archive of environmental
change (Justice et al., 1998).

Suomi NPP
and NOAA
20

Visible Infrared
Imaging
Radiometer
Suite (VIIRS)
NASA/NOAA

VIS (375/750 m) 
NIR (375/750 m) 
SWIR (375/750 m) 
TIR (375/750 m) 

Daily, 
3,000 km, 
12-bit

Suomi NPP VIIRS 
Oct 2011 – present 
NOAA 20 VIIRS 
Nov 2017 – present

is NASA/NOAA partnership intended
to improve the measurements of AVHRR
and MODIS for future Joint Polar Satellite
System (JPSS) satellites. e JPSS satellites
are very useful for monitoring natural
disasters (National Aeronautics and Space
Administration, n.d.-b).

Sentinel-3A Ocean and Land
Colour Instru-
ment (OLCI)
ESA

VIS (300 m) 
NIR(300/500 m) 
SWIR(500 m) 
TIR(1,000 m) 

< 4 Days,
1,270 km, 
12-bit

S3A OLCI Feb 2016 – present e OLCI instrument serves as a continu-
ation of the Medium Resolution Imaging
Spectrometer (MERIS) sensor, providing
information about ocean surface topogra-
phy as well as land and sea surface temper-
ature (Malenovský et al., 2012). 
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Medium-Resolution Satellite Sensors

Note: Spectral bands are represented as broad categories; see Figure 2 for detailed spectral ranges.
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Satellite Sensor,
Agency

Spectral Bands 
(Spatial
Resolution)

Revisit,
Swath, 
Radiometric
Resolution

Operational Lifetime Comments and References

EO-1 Advanced
Land Imager
(ALI) NASA

PAN (10 m)
VIS (30 m)
NIR (30 m)
SWIR (30 m)

16 days, 
185 km, 
12-bit

EO-1 Nov 2000–Feb 2017 EO-1 ALI was an experimental satellite sensor with
very sparse data acquisition (Ungar et al., 2003).

Landsat 1-3 Multispectral
Scanner
(MSS) NASA

VIS (60 m)
NIR (60 m)

18 days, 
185 km, 
6-bit

L1 MSS Jul 1972–Jan 1975
L2 MSS Mar 1978–Jan 1978
L3 MSS Feb 1982– Mar 1983

Landsat 1-3 MSS provide a global window into the
1970s and early 1980s (United States Geological
Survey, 2017b).

Landsat 4-5 ematic
Mapper (TM)
NASA

VIS (30 m)
NIR (30 m)
SWIR (30 m)
TIR (120 m)

18 days, 
185 km, 
8-bit

L4 MSS / TM Jul 1982–Mar 1984 
L5 MSS / TM Dec 1993–Jun 2013

Landsat 4-5 TM provide continuous 30 m resolu-
tion imagery over the globe between 1982–2013,
but more reliably between 1985–2012 (United States
Geological Survey, 2017b).

Landsat 7 Enhanced
ematic
Mapper
(ETM+)
NASA

PAN (15 m)
VIS (30 m)
NIR (30 m)
SWIR (30 m)
TIR (120 m)

16 days, 
185 km, 
9-bit

L7 ETM+ Apr 1999–present Issues began in 2003 affecting the scan line
corrector (SLC). Since May 1, 2003, persistent black
stripes compromise > 20% of each image (United
States Geological Survey, 2017b).

Landsat 8 Operational
Land Imager
(OLI)
NASA

PAN (15 m)
VIS (30 m)
NIR (30 m)
SWIR (30 m)
TIR (100 m)

16 days, 
185 km, 
12-bit

L8 OLI Feb 2013–present Landsat 8 OLI provides many enhancements to the
ETM+, most notably the 12-bit radiometry and the
addition of coastal and cirrus bands (United States
Geological Survey, 2017b).

Terra Advanced
Spaceborne
ermal
Emission and
Reflection
Radiometer
(ASTER)
JAXA/NASA

VIS (15 m)
NIR (15 m)
SWIR (15 m)
TIR (90 m)

16 days, 
60 km, 
8-bit 
(12-bit TIR)

ASTER Dec 1999–present e SWIR bands were decommissioned on April 1,
2008, because of anomalously high SWIR values
indicative of instrumentation error (Tan, 2008).

Sentinel 2A
and 2B

Multispectral
Imager (MSI)
ESA

VIS (10 m)
NIR (10 m)
SWIR (20 m)

10 days, 
290 km, 
12-bit

S2A MSI Jun 2015– present 
S2B MSI Mar 2017– present

Twin polar orbiting satellites phased at 180° to 
each other have a combined five-day revist time 
(Malenovský et al., 2012).
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