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Streamflow records are required for a wide range of industrial, environmental, and urban design
applications. However, the sparse distribution of hydrometric stations in western Canada, and their
limited spatial and temporal representativeness, necessitate hydrologic regionalization methods to
generate streamflow for a point of interest. Here, an efficient semi-distributed hydrological modelling
workflow that has modest data requirements and uses publicly available data sources, freely available,
open-source data processing tools, and the Raven hydrological modelling framework is presented. First,
the workflow is presented by outlining the major steps required for a range of modelling applications.
Second, the workflow is applied to simulate streamflow for the Elk River watershed in British
Columbia. Finally, the calibrated model is used to quantify glacier contributions to streamflow and
investigate the hydrologic response to future climate and land use scenarios. e workflow is scalable,
flexible, relies on few statistical assumptions, and is scientifically rigorous. In addition, the resultant
model allows the ability to trace the primary sources of streamflow in the region, and for the
evaluation of future watershed hydrology due to environmental and climatic change.

KEYWORDS hydrologic modelling; streamflow; watershed modelling

For many environmental, industrial, and urban applications in western Canada, an assessment of surface
water quantity and quality is required for a basin or watershed of interest. In many instances, this may be
part of an Environmental Assessment (Alberta ESRD, 2013; British Columbia Ministry of Environment,
2012), though a quantification of surface water is vital for a wide range of topics, including water
licensing, flood risk analysis, and watershed assessment. Generating required surface water indicators
typically relies on continuous daily streamflow (m3/s) for a region or point of interest. However, the rela-
tive paucity of streamflow records, as well as their limited temporal and spatial representativeness,
necessitate hydrologic regionalization methods to generate records for an ungauged point of interest. 

A rudimentary approach to hydrological regionalization employs empirical scaling relations. Typically
streamflow is calculated using a regional record and linear regression to scale the data to a drainage
area’s point of interest. is approach has the advantage of being easy to implement, and has low data
requirements (Razavi & Coulibaly, 2012). However, it assumes statistical stationarity, synchrony between
sites, and the spatio-temporal representativeness of the proxy sites (Rosenberg et al., 2011). ese
assumptions limit the method, since they rely on coincidal extreme events, and are susceptible to bias
introduced by short data records or weak spatial transferability, which can limit the accuracy of simula-
tions (Vogel, 2006). In addition, since this method relies solely on historical data, it cannot reliably
account for climatic changes or projected future hydro-climatic regimes (Fernandez et al., 2000).
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As an alternative, modelling the governing hydrologic processes avoids these assumptions. is
approach offers the flexibility to simulate a variety of hydrological processes directly, allowing for a
model to be chosen to best represent the regional hydrology. Furthermore, the approach provides a
tool that can be used to examine watershed processes under a range of current and (potential) future
climatic and land use conditions. While data and technical requirements are higher than for empir-
ical scaling relations, hydrologic modelling methods allow for robust, scientifically defensible simula-
tions, flexible model constructions, uncertainty assessment, and a framework to constrain the range
of potential hydrologic response to environmental change. is article presents an efficient workflow
to simulate watershed hydrology using a semi-distributed hydrological model, publicly available
(free) data, open-source tools, and relatively little, readily available input data.

is article:
applies the Raven hydrological modelling framework as part of a general workflow1
required to generate a working hydrological model; 
presents specific steps used to simulate streamflow in the Elk River, British Columbia; and2
demonstrates some potential applications of a calibrated hydrological model relevant to3
watershed assessments in western Canada.

Raven is a fast and flexible hydrological modelling framework that allows for the simulation of
watershed hydrology. Unlike a hydrological model, where a single-model representation of the
physical processes is imposed on all watersheds, the Raven hydrological modelling framework
allows for the customization of the watershed representation based on data availability, geographic
setting, landscape type, process understanding, and project goals (Craig et al., 2016). Most com-
monly, the practising hydrologist is concerned with water quantity, and therefore will simulate
streamflow. However, Raven can be configured to generate additional outputs, such as tracking
runoff source areas and a range of system states and fluxes, including: snow-water equivalent; soil
wetness; air temperatures; evaporation; and net shortwave/longwave radiation at points of interest.
is flexibility gives Raven a wide range of potential applications, some of which will be demon-
strated below. Raven is freely available, and can be downloaded at http://www.civil.uwaterloo.ca
/jrcraig/Raven/Downloads.html .

Basic Raven model configurations require five input files: (1) a file specifying how to represent the
water cycle, including selected algorithms for each hydrological process employed (e.g., the
Priestley-Taylor algorithm for potential evaporation, the HBV-EC snowmelt algorithm for snowmelt
energy); (2) a file containing values for all model parameters; (3) a spatial file containing land use
and terrain data for each Hydrologic Response Unit; (4) a time-series file containing meteorological
and, optionally, streamflow data for calibration and verification; and (5) a file containing initial
watershed conditions (which can be le blank). For generating these files, R statistical soware (R
Core Team, 2016) was utilized for data processing and formatting, as well as post-modelling analysis
and data visualization.

Data Requirements
Meteorology data
Daily maximum and minimum air temperatures and precipitation data are required for at least one
regionally representative location. Depending on the size and meteorological complexity of the
basin, additional meteorological stations may be required to adequately capture variability in precip-
itation and temperature distributions. In particular, locations with strong directional precipitation
and air temperature gradients (such as along the Alberta-British Columbia Continental Divide) will
likely require multiple gauges to accurately reproduce this spatial heterogeneity. In addition to the
number of stations required for the hydrological model, Raven cannot accommodate missing mete-
orological values, and missing data must be infilled prior to simulation. Typically, the simplest
infilling method involves deriving statistical relations between the site of interest and a nearby mete-
orological station with available data. Where no suitable nearby station is available, more complex
methods, such as splines or interpolation using mean values (e.g., Junninen et al., 2004; Schneider,
2001), or the use of a downscaled climate data set, such as ClimateBC/WNA/NA (Wang et al., 2012),
may provide a useful alternative.
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Hydrologic response unit delineation
To reduce computation time, areas of similar character and location, termed Hydrologic Response
Units (HRUs) (e.g., Jost et al., 2012; Stahl et al., 2008), are lumped together and assumed to have a
uniform hydrologic response to meteorological inputs. Hydrologic Response Unit delineation typi-
cally consists of an overlay of land use, elevation bands, slope, and aspect, while in some instances
further spatial datasets, such as vegetation, soil types, or geology, may be used. In heterogenous
basins (typically steep, mountainous watersheds), an initial overlay, as would be generated through
an intersection operation on the input spatial datasets, can generate a large number of HRUs, many
of which will be small and discontiguous. A moving window modal filter can be applied, such as
applying the “focal()” function in the R “raster” package (Hijmans & van Etten, 2012) to reduce the
scatter in the HRUs. e filter smooths the raster by finding the mode in a moving window with a
user-specified number of grid cells. For input into Raven, the area, elevation, land use class, vegeta-
tion class (which in many cases will be the same as the land use class), soil profile, slope, and aspect
must be specified for each HRU. Elevation, slope, and aspect can be obtained from the mean value in
each HRU, while the longitude and latitude of each HRU (used for interpolation and radiation esti-
mates) can be approximated by its centroid. Vegetation and soil classes for each HRU are oen
implicitly tied to each land use type, unless additional input layers were employed during HRU
delineation.

Additional data
In general, the use of additional sources of data (beyond basic meteorological and observed stream-
flow data) have been shown to significantly improve model performance and ensure streamflow is
being generated by the correct mechanisms (Finger et al., 2015). Unless all model parameters are
known with a high degree of confidence, streamflow data will be required for model calibration and
verification. Air temperature and/or precipitation data from climate stations not used as model input
are also useful to evaluate the spatial distribution of meteorological variables further from gauged
sites. Snow water equivalent (SWE) observations are particularly valuable in watersheds with deep
snowpacks, as they provide a secondary calibration or verification dataset, and allow for a verifica-
tion of the snow accumulation and melt routines, independent of runoff.

Model Setup
One of the primary benefits of using Raven as a hydrological modelling framework is the flexibility in
process and algorithm implementations. Since no hydrological processes are forced upon the user, the
user has full flexibility to include (or exclude) processes and define the algorithms used to represent
them. For example, in modelling snowmelt, options range from temperature index methods that
require only air temperaure, to full energy balance approaches that employ detailed shading and solar
geometry calculations. Similarly, the modeller can choose to include one of several available snow sub-
limation routines of varying complexity, or to exclude the process completely. is flexibility allows
Raven to be easily customized to conform to existing conceptual hydrological models, or to examine
individual portions of the water balance independently (e.g., only snowmelt or evaporation). 

While the user must choose individual processes and algorithms, Raven has also demonstrated near-
perfect emulation (Craig et al., 2016) of several popular hydrological models, including HBV-EC
(Bergström, 1995), UBC-WM (Quick & Pipes, 1977), and GR4J (Edijatno et al., 1995), while it
employs algorithms from other models, including VIC (Liang et al., 1994). ese templates allow for
the use of popular (and vetted) conceptual models with the flexibility to include custom processes
and/or algorithms. A thorough discussion of model selection for a range of applications can be
found in Beckers et al. (2009). 

In addition to hydrological processes, the user also has control over global routines, such as the inter-
polation method between meteorological gauges (if applicable). e modeller can choose to spatially
interpolate climate observations using inverse distance weighting or nearest-neighbour methods, or
to manually provide a gauge weight to each HRU. Hydrologic routing routines between nested sub-
basins can also be modified, with options ranging in complexity, including Muskingum-Cunge
(Overton, 1966) and diffusive wave routing mechanisms, or simple time-delay calculations. In addi-
tion, lakes, reservoir operations, and non-natural inflows or outflows (e.g., industrial treatment
output) can all be accounted for within the hydrologic routing of the basin. is flexibility provides a
highly customizable hydrological model, and allows for project goals and relevant processes to drive
model formulation.
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Parameterization, Calibration, and Model Verification 
e choice of processes and algorithms will dictate which model parameters are required. In almost
all cases, calibration will be required to fit simulated values to observed (likely streamflow) data. For
instances where streamflow data are only available from a single gauge, the available record should be
split. A portion of the record should be used for calibration, while the remainder should be held sepa-
rate for model verification (Klemeš, 1986). Model parameters can be calibrated using the soware tool
OSTRICH (Matott, 2005; Matott & Rabideau, 2008), which can implement a number of optimization
algorithms, including dynamically dimensioned search (DDS) (Tolson & Shoemaker, 2007) and
Levenberg-Marquardt (Marquardt, 1963), which are discussed in detail below. 

Model calibration and uncertainty analysis typically involves Monte Carlo simulations or a general-
ized likelihood uncertainty estimation (GLUE) (e.g., Jost et al., 2012; Mahat et al., 2015; Stahl et al.,
2008) where a large number (>10,000) of uniformly randomly selected parameter sets are generated.
However, these methods are computationally intensive (Tolson & Shoemaker, 2008), and larger
models may require long periods of time to calibrate (days or weeks). In contrast, the DDS algorithm
reduces computational cost by automatically scaling the search to find a globally optimal solution
based on a user-specified maximum number of model iterations (Tolson & Shoemaker, 2007). is
has the advantage of focusing parameter perturbations toward a global maximum and reducing the
potential for equifinality, while also significantly reducing the number of model iterations needed to
converge on an acceptable solution, making it a more efficient approach (Razavi et al., 2010).

Here, parameter calibration is achieved by first identifying sensitive parameters and then grouping and
calibrating process-related parameters in a step-like fashion, broadly following Stahl et al. (2008); the
overarching method is outlined in Table 1. First, initial parameter sets are input as a guided “first esti-
mate” and are manually adjusted to roughly emulate the shape and structure of the annual hydrograph.
e complete set of parameters is then calibrated using the Levenberg-Marquardt algorithm, 1000 iter-
ations (though this number may vary based on the number of model parameters), and a relatively
broad range of parameter values. e sensitivity of each parameter is determined within the OSTRICH
soware optimization tool using composite scaled sensitivities (CSS) (Hill, 2000; Matott, 2005), and
insensitive parameters (CSS ≈ 0) are excluded from further calibration steps. In further steps, calibra-
tion for sensitive parameters is executed in process-based groups (Table 1) using the DDS algorithm.
is sensitivity screening significantly reduces the number of parameters considered in calibration,
leading to a significantly reduced computational cost.

Table 1: Framework for parameter calibration, where the subscript Q represents daily streamflow,
while MAF designates mean annual flow. 

Note: NSE is the Nash-Sutcliffe Efficiency, CSS is the composite scaled sensitivity, and PBIAS is the percent bias, while the subscript Q
represents daily streamflow and MAF designates mean annual flow. T and P correspond to air temperature and precipitation.

Second, the simulated annual water yield in the catchment is corrected to mean annual flow (MAF) by
calibrating water balance parameters, such as the precipitation and air temperature lapse rates, canopy
interception, and glacier melt (if applicable). ird, freshet timing is calibrated to daily streamflow by
calibrating the air temperature lapse rate and melt parameters for each land use type (in snowmelt-
dominated basins such as the one presented in this study). If snow water equivalent (SWE) data are
available, the melt timing and peak SWE values can be directly compared, while an additional qualita-
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Guiding Principle Parameters Criteria/Objective

1. Isolate and exclude insensitive parameters All CSS ≈ 0
(“not calculated”)

2. Ensure correct volume of water in catchment T, P lapse rates, 
Interception, glacier melt

Minimize PBIASQ
Maximize NSEMAF

3. Ensure correct freshet timing T lapse rate, melt factors Maximize NSEQ
Ensure SWE timing

4. Calibrate routing, sensitivity, and baseflow Soil routing parameters Maximize NSEQ

5. Approximate parameter uncertainty All Obtain parameter SE
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tive inspection can be carried out over a range of HRUs (selected to span elevations and aspects) to
ensure realistic accumulation and melt rates. It should be noted that in basins where snowmelt is
modest or nonexistent, this step may be omitted, as the model will not be sensitive to changes in
these parameters (and many may not even be included in the model). Fourth, water routing and
streamflow responsiveness is calibrated using routing parameters. Steps two through four are
repeated as necessary until satisfactory model performance is met. Once an adequate model solution
is found, a final refinement calibration run is implemented for all sensitive parameters using the
Levenberg-Marquardt algorithm in order to derive uncertainty statistics such as the standard error.
Model fit is evaluated during calibration runs using the Nash-Sutcliffe Efficiency (NSE) (Nash &
Sutcliffe, 1970). In some cases, calibration runs may be improved by minimizing the (absolute) per-
cent bias (PBIAS) as a secondary objective function. Raven supports the direct calcualtion of these
diagnostic metrics (and many others), if provided with an observed streamflow time series.

Once the model has demonstrated satisfactory performance, model strengths and liminations
should be evaluated using independent verification data. Common hydrology summary statistics,
such as the Nash-Sutcliffe Efficiency and Percent Bias, are evaluated using simulated and observed
streamflow values (Moriasi et al., 2007). While the decision to verify the model using a daily or
monthly time step will likely depend
on project scope and goals, addi-
tional diagnostic measures will offer
a much improved view on the
strengths and weaknesses of the
model. For instance, average sea-
sonal or monthly NSE calculations
(or absolute differences) will show
when model performance is good,
and can better elucidate processes
that are (or are not) performing well. 

Study Site  
The Elk River is located in south-
eastern British Columbia, immedi-
ately west of the Continental Divide
and the Alberta border (Figure 1).
The watershed originates at Elk Pass
and drains south through Sparwood
and Fernie, B.C., before reaching its
confluence with the Kootenay River
at Lake Koocanusa, B.C. The Elk
River watershed has received con-
siderable attention recently, with
substantial land use from the
mining sector resulting in water
quality concerns (Kuchapski &
Rasmussen, 2015), in addition to
extensive forestry and recreation
development. The Elk River is home
to important native species, such as
the westslope cutthroat trout
(Oncorhynchus clarkii lewisi), which
are threatened by climate change
throughout their native range
(Muhlfeld et al., 2017). In addition
to supporting an important fishery,
the Elk River supports a wide range
of social, cultural, and economic
values. 
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Case Study

Figure 1: Map of Elk River Watershed study area. Contours are
500 m.
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e watershed ranges in elevation from 760 m (above sea level) at Lake Koocanusa to 3450 m at
Mount Joffre, and drains 3090 km2 at Fernie, BC. Climate normals from 1980 to 2010 (Environment
Canada, 2015) show that west of the watershed, Fernie, BC, receives an average of 1227 mm of pre-
cipitation annually, while northeast and east of the watershed, Sparwood, BC, and
Coleman/Crowsnest, AB, are much more arid, and only receive an average of 613 mm and 582 mm
annually. Air temperatures display a strong seasonal continental pattern; monthly average of the
maximum daily temperatures peak in August (25.1°C at Fernie) and reach a minimum in December
(-3.4 °C in Sparwood, -1.9 °C in Fernie). 

e watershed experiences heavy snowfall during the winter months (Environment Canada, 2015),
and the northern headwaters also contain several small glaciers. Lower elevations in the watershed
are forested, primarily by coniferous trees (in various states of hydrologic recovery from natural dis-
turbance and timber harvest), while higher elevations are bare alpine meadows. e watershed con-
tains several large open-pit coal mines, totalling 184 km2 of area; most notably, the Fording River
watershed contains 68.25 km2 of disturbed area (HectaresBC, 2006)

Data Sources
Daily streamflow data (m3/s) were available for several sites within the Elk River watershed from
Water Survey of Canada (2016) hydrometric stations. Two sites were available on the mainstem,
while two additional sites were available on major tributaries (Table 2). 

Table 2: Water Survey of Canada hydrometric gauges used in this study.

Daily climate data (maximum, minimum, and mean air temperatures and precipitation) to drive
Raven were obtained from five Environment Canada (2016) climate stations (Table 3). Data were
available from 1980–2015; however, gaps in the datasets necessitated infilling using nearby climate
stations. Air temperature data were infilled by fitting a linear regression model to an adjacent site.
Daily precipitation data were imputed using the relative (percent) difference in daily precipitation
totals for overlapping events with a nearby adjacent site. All air temperature regressions ranged from
r2 = 0.90–0.98, while relationships for net precipitation ranged from r2 = 0.40–0.50. An additional
climate station, Morrissey Ridge (British Columbia Ministry of Forests, Lands and Natural Resource
Operations, 2015), contained temperature and snow water equivalent (SWE) data from 1983–2013,
and was used in model verification. It was therefore excluded from infilling routines.

Table 3: Climate data used in this study. 

Note: EC refers to Environment Canada, while FLNRO refers to the British Columbia Ministry of Forests, Lands and 
Natural Resource Operations (2015).
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Station Name Station Number Years Area (km2)

Line Creek at the Mouth 08NK022 1971–2014 138

Fording River at the Mouth 08NK018 1970–2015 621

Elk River near Natal 08NK016 1950–2015 1840

Elk River at Fernie 08NK002 1925–2015 3090

Site Latitude Longitude Elevation Climate ID Network

Kananaskis Pocaterra 50º 43’45” N 115º 07’12” W 1610 3053604 EC

Fording River Cominco 50º 08’55” N 114º 51’18” W 1585 1152899 EC

Crowsnest 49º 37’39” N 114º 28’55” W 1303 3051R4R EC

Sparwood 49º 44’43” N 114º 52’58” W 1138 1157630 EC

Fernie 49º 29’19” N 115º 04’24” W 1001 1152850 EC

Morrissey Ridge 49º 27’00” N 114º 58’00” W 1800 2C09Q FLNRO
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A digital elevation model (DEM) for the region was required to generate HRUs, and was obtained from
the Canadian Digital Elevation Model Mosaic (Natural Resources Canada, 2016). e DEM has a spa-
tial resolution of 20 m, an average horizontal accuracy of 21.8 m, an estimated altimetric accuracy for
the region of 10–15 m, and was derived from data taken during the period of 1984–1990. Slope and
aspect were obtained from the DEM using the “terrain()” function within the R “raster” package
(Hijmans & van Etten, 2012). Land use data for the region were obtained from HectaresBC (2006) at
100 m resolution, where the data are classified in seven land use groups: forest, grassland, alpine, water,
wetlands, human, and glacier. Hydrologic Response Units were delineated by the overlay of five sub-
basins, three slope classes (< 15º, 15º to 30º, > 30º), four aspects (north, east, south, west), 100 m eleva-
tion bands, and land use passed through a three by three cell focal (modal) filter. In total, 3213 HRUs
were generated for the watershed. e number of HRUs could likely be significantly reduced using the
HRU discretization approach of Liu et al. (2016), however the model runtime was sufficiently fast
(approximately 450 seconds on a MacBook Pro [mid-2010] with a 2.4 GHz Intel Core 2 Duo for a ten-
year daily time step simulation), and therefore no further attempt was made to reduce the number of
HRUs for computational expediency. For general practice, removing HRUs that have relatively small
spatial coverage and/or hydrological influence is recommended. Note that the above model customiza-
tion would not be feasible if using a standard off-the-shelf model, where all of the process algorithms
are typically hard-coded, but is readily implemented within a flexible framework such as Raven.

Hydrological Model
e watershed was simulated with Raven using a modified version of the HBV-EC; a Canadian ver-
sion of the original Scandinavian watershed model developed by Environment Canada (Bergström
et al., 1995; Canadian Hydraulics Centre, 2010). Precipitation intercepted by the canopy was simu-
lated following Hedstrom and Pomeroy (1998), where the rate of interception was controlled by the
leaf area index and vegetation cover defined for each land use type. Precipitation that is not inter-
cepted reaches the soil as SWE or rain. Snowmelt was calculated using a spatially corrected tempera-
ture index model, which has been shown to perform well basin-wide over a variety of regions and
environments over a daily time step (Hock, 2003; Jost et al., 2012). e method is particularly effec-
tive in data-poor mountainous regions, where the lack of spatially distributed solar radiation, wind
speed, and humidity observations make alternatives, such as a full energy balance method, imprac-
tical. Snowmelt (M) was computed for each HRU as a function of daily air temperature (Tair), where: 

M=MpCf[1−Casin(s)cos(a)]Tair (1)

and Mp is a global base melt factor (mm/d/oC) that varies sinusoidally between a maximum and
minimum at summer and winter solstices, accounting for seasonal variations in solar radiation
related to day length. e global base melt factor was corrected for vegetation cover (Cf) to account
for the effect of forest cover on shading. A further correction was applied to account for the global
sensitivity (Ca) of the melt factor to the slope (s) and aspect (a) of each HRU. In glaciated HRUs,
once the snow has been depleted, glacial ice is melted following the above snowmelt routine with a
correction factor (calibrated to 3.55 in this model) to account for the higher melt rate of glacier ice
due to the much lower albedo of ice relative to snow. Glacial water storage and release were simu-
lated using the HBV-EC algorithms. 

Snowmelt, glacial ice melt, and rainfall become surface water, which then infiltrate the three-layer
soil. Soils were treated as a three-bucket model. In the uppermost layer, soil water was directed down-
ward by percolation and upward by capillary rise. In the lowest two layers, soil water can return to
the surface as baseflow; the response in the middle soil layer was modelled as a fast response, while
the response in the deepest layer was slower. Unlike the HBV-EC model, baseflow in the deepest soil
layer was simulated using the Variable Infiltration Capacity (VIC) routine (Clark et al., 2008), which
allows the baseflow response in this layer to vary as a function of the available soil water.

Model Calibration and Verification
e model was calibrated using streamflow (m3/s) records from Water Survey of Canada hydro-
metric gauges Elk River at Fernie and Fording River at the Mouth, from 2000–2010, following the
methodology outlined above. e model was most sensitive to the precipitation and adiabatic tem-
perature lapse rates, snowmelt correction factor for forest land use types, and baseflow coefficients
for the deepest soil layer (Figure 2).
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Figure 2. Composite scaled sensitivities for all calibrated parameters relative to the Elk 
River at Fernie hydrometric station.

e model was verified for the period between 1990–2000 and 2010–2014 for Elk River at Fernie,
and Fording River at the Mouth, and for the entire period 1990–2014 for the other regional hydro-
metric gauges. Performance statistics for streamflow are summarized in Table 4, and hydrographs are
plotted in Figure 3. In addition, meteorology and snowpack were verified at Morrissey Ridge.
Simulated SWE showed good agreement with observations (r2 = 0.82, PBIAS 4.2%), while maximum
daily air temperatures were also well-emulated (NSE = 0.88). In general, streamflow was well simu-
lated throughout most of the year. Small deviations were observed during the fall, when streamflow
was over-predicted, and during the late winter, when flows were under-predicted. ere was strong
agreement in average and 10th and 90th quantile flows from April to August (Figure 3). 

Table 4: Performance statistics Nash-Sutcliffe Efficiency (NSE) and Percent 
Bias (PBIAS) for Elk River watershed hydrometric model.

Figure 3. Simulated and observed hydrographs for four Elk Valley WSC hydrometric stations from
1990–2010. Lines correspond to average daily streamflow for the period, while shaded lines correspond
to 10th and 90th quantiles. 
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Site
Calibration Verification

NSE PBIAS (%) NSE PBIAS (%)

Elk River at Fernie 0.91 1.2 0.92 -7.2

Elk River near Natal - - 0.91 2.7

Fording River at the Mouth 0.82 7.9 0.84 -1.6

Line Creek above Diversions - - 0.86 -6.0
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Once the model has been built and its performance verified, streamflow predictions can be made
with good (known) confidence. While in many cases this may be all that is required for the project, a
calibrated model based on underlying physical processes offers the opportunity to simulate a wide
range of scenarios and calculate various hydrological indicators. e flexibility in using Raven allows
for a wide variety of potential scenarios, including various climate scenarios that involve changing
meteorological forcings in the model, and land use changes that involve modifying or generating
new HRUs. e choice of scenario (if any) will be informed by the project objectives and require-
ments; however, they will also be limited by model performance, the reliability of input data, and the
development and parameterization of the hydrological model. An important consideration for all
applications is how well the model represents physical processes. is is particularly true for sce-
nario analyses; if the physical process governing the scenario is not adequately represented in the
model (or emulated at all), the simulated response will be unreliable. For instance, when examining
the effect of forestry on snowmelt over a basin, it is essential to ensure that the relative vegetation
cover and slope/aspect corrections adequately capture the relative differences in the two sites, and
recognize what processes are (and are not) accounted for in the simulation. Additionally, this model
simulates snowmelt using a temperature index approach that, while it does not provide the same
potential precision as a fully distributed energy balance approach, requires substantially less input
data, and subsequently less assumptions of how those data are spatially distributed. is sort of
trade-off is ubiquitous, and should be informed by, among other factors, data availability, the phys-
ical environment, and project goals. In all cases, the underlying assumptions implicit in the model-
ling scenario play an important role in the simulated results, and remain the responsibility of the
modeller. Below, several common scenarios that could be of interest to a wide range of practitioners
are presented.

Land Use Change
Changes in land use can be simulated directly by modifying the HRU file, given that land use/cover
is a direct input into the hydrological model. Here, a first order estimate of forest removal is pre-
sented (Figure 4). A random sample of forested HRUs in the uppermost subbasin (Elk River below
Weary Creek) was converted from “Forest” to “Grassland.” e land use change totalled 74.25 km2;
23.0 percent of the headwaters basin and 1.5 percent of the entire Elk River watershed. Simulated
results displayed a slightly earlier spring freshet in the headwaters, and lower streamflow in the
summer (July–September). e effect of forest removal was more pronounced further upstream, but
still had a discernible impact on average late-summer streamflow at the Elk River above Natal hydro-
metric station.

Figure 4. Daily average observed, simulated, and forest removal scenario (simulated) streamflow for
four points of interest along the Elk River.

Glacier Contributions to Streamflow 
e percentage contribution to streamflow of any HRU, or group of HRUs, can be accounted for
using built-in cofiguration-independent tracer algorithms within Raven. is allows the user to
quantify the streamflow contributions over a location or land use type of interest. Here, contribu-
tions for all glacier HRUs in the watershed are presented (Figure 5). eir percent contribution was
averaged by the day of year for four locations along the mainstem. Elk River at the Mouth is the
most downstream point in the watershed, while Elk River below Weary Creek is a headwaters sub-
basin encompassing 334 km2; all over 1575 m (above sea level). Results suggest that glaciers in the
watershed are relatively minor contributors to streamflow throughout much of the year, though they
can be substantial contributors (8–11% at Elk River below Weary Creek) during the late summer. 
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Figure 5. Average daily glacier contribution to streamflow for four locations on the Elk River, B.C. in
lines represent daily average for the period 2000–2010, while the thicker line is the LOESS smoothed
trend.

Climate Change Simulations
Another common application of a calibrated hydrological model is the simulation of the impact of
future climate change (Intergovernmental Panel on Climate Change, 2014; Liverman, 2007) on
streamflow. Here, a simple climate change scenario is presented by scaling historical climate data
used in the model. Scaling factors were obtained from ClimateWNA (Wang et al., 2012) for each cli-
mate station location by calculating the absolute monthly difference in maximum, minimum, and
mean air temperatures, and relative (percentage) difference in monthly precipitation between the
CanESM2 RCP 4.5 2025 model and 1980–2010 climate normals. Simulations show an earlier and
larger average freshet for all four locations, with minimal changes in winter and fall (low) flow
(Figure 6). It should be noted that this first-order estimate does not include changes to land cover,
most notably glacier area change, which would further complicate streamflow response.

Figure 6. Daily average streamflow for four points of interest along the Elk River, showing observed,
simulated, and the RCP 4.5 climate change scenario.

is article has presented an efficient workflow to simulate watershed hydrology with modest data
requirements and a robust scientific framework. Streamflow simulations derived using this workflow
rely on few statistical assumptions, are rooted in governing hydrological processes, and allow for
flexible model development and parameterization. is allows for a more holistic understanding of
the watershed of interest, while relying on the governing physical processes to dictate output.
Ultimately, this enables model scalability beyond the gauge and time period of record, allowing for
long-term assessment of hydrologic change. is method presents many options to extend the
analysis and examine a suite of scenarios, including climate change, land use change, and assessing
the primary processes governing streamflow generation. e relative ease, scientific robustness, and
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high degree of flexibility make this method of semi-distributed hydrologic modelling an effective
and efficient workflow to generate streamflow records and examine watershed hydrology for a wide
range of industrial, environmental, and urban applications.

e authors would like to thank Canadian Forest Products Ltd. for funding the modelling work con-
ducted in the Elk River Watershed, and for the anonymous reviewers and editor for their helpful
suggestions, which have improved the content and clarity of this submission. 
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