
CONFLUENCE
Journal of Watershed Science and ManagementVO

LU
M

E
1

Why Watershed Analysts Should Use R for Data Processing and Analysis

Abstract

Introduction

R. Dan Moore & David Hutchinson
R. Dan Moore is Professor and Chair of Forest Hydrology in the Department of Geography at the University of British Columbia.
Email: dan.moore@ubc.ca

David Hutchinson is a District Manager with the Water Survey of Canada Division at Environment and Climate Change Canada.
Email david.hutchinson@canada.ca

Both the science and practice associated with watershed management involve the processing,
presentation and analysis of quantitative information. In this article, the use of open source
programming languages by watershed analysts is advocated. The R language, in particular, provides
a rich set of tools for the types of data that are commonly encountered in watershed analysis. The
utility of R is illustrated through three examples: intensity-duration-frequency analysis of rainfall data,
baseflow separation, and watershed delineation and mapping.

KEYWORDS: data science; programming languages; reproducible analysis; visualization;
watershed analysis

Both the science and practice associated with watershed management involve the processing,
presentation, and analysis of quantitative information. The tools available to watershed analysts have
evolved dramatically over the last few decades. When the senior author was an undergraduate student
in the 1970s, science and engineering students learned to program in one of the dialects of FORTRAN
on mainframe computers. Statistical analyses at that time were typically conducted using statistical
functions within the International Mathematics and Statistics Library (IMSL) Numerical Libraries,
called from a FORTRAN program, or by using a mainframe implementation of a statistical package
such as SAS, SPSS, or BMDP.

In the 1980s, the advances in desktop personal computers changed the data analysis landscape.
Programmers, including the senior author, moved from the clunky FORTRAN compilers then
available for microcomputers to faster-compiling implementations of Pascal. Programs such as SYSTAT
provided the capability to conduct sophisticated statistical analyses and generate complex graphs
in a publication-ready quality format. Spreadsheet programs such as Lotus 123, Quattro, and later
Microsoft Excel became the Swiss Army knives of data analysis, providing a broad range of functions
for data processing, analysis, and graphing. Ongoing development of geographic information system
(GIS) software revolutionized our ability to analyze and visualize spatial information. In particular, the
ability to delineate catchment boundaries from digital elevation models (DEM) and extract land cover
characteristics has been a boon to the science and practice of watershed analysis and management.

In our interactions with consultants and government scientists who are involved in watershed analysis,
it appears that spreadsheets continue to dominate the state of practice, in conjunction with additional
software products to perform analyses that are not supported by spreadsheets (e.g., GIS and statistical
packages). Spreadsheets also remain in use in the academic community. In terms of programming
languages, Matlab is popular in both the practitioner and academic communities, particularly where

01

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

numerical methods are required to solve equations. Matlab is a commercial product that facilitates
high-level programming within a sophisticated graphical user interface (GUI), and in conjunction with
add-on packages, can accommodate the full range of tasks typically performed by watershed analysts.
The open-source programming language R has been adopted primarily by research-oriented watershed
scientists and does not yet appear to have widespread uptake among practitioners.

The objective of this article is to argue for the expanded use of a programming language within the
watershed science and management community. In particular, the use of the R language is encouraged.
Although this article describes some specific functions and data types within R, it is not intended to
be a hands-on introduction; however, pointers to useful resources for beginning and novice R users
are provided.

The use of a programming or scripting language facilitates automation of repetitive tasks and
thus can reduce the time and cost associated with many watershed analyses. In addition, the use
of programming or scripting languages is increasingly important for purposes of reproducibility
of analyses. Sandve et al. (2013) noted the importance of reproducibility and transparency in the
context of research by outlining 10 steps that should be followed to ensure reproducibility. For
example, manual data manipulation should be avoided (e.g., infilling missing data by hand within
a spreadsheet or copying and pasting data between spreadsheets). Although it is possible to edit
data in a transparent manner within a spreadsheet—for example, by creating an additional column
for the edited data series and leaving the original series unaltered—this approach is cumbersome
and difficult to automate for repetitive application. Furthermore, it is simpler to audit code than to
manually inspect multiple spreadsheets to ensure that data-infilling has been performed correctly.
Reproducibility should be a high priority in practical applications as well as in research, particularly
for controversial resource-related projects that may be the subject of environmental appeal processes.
The recommended approach is to write a program or script that reads in the raw data, performs any
required editing or manipulation, then saves the edited data in a new file for further processing and
analysis, thus preserving the integrity of the original data set.

Many statistical packages, including SAS, JMP, SPSS, Minitab, and SYSTAT, have powerful scripting
capabilities and thus facilitate reproducibility and ease of automation. These packages provide access
to sophisticated statistical procedures and have established credibility in government, industry, and
academia. Most also provide functions for statistical graphics and even mapping and spatial statistics.
However, their main limitations for general purpose watershed analysis are their lack of support for
numerical modelling (e.g., solution of differential equations) and GIS-related operations, such as
digital terrain analysis.

An important consideration for many users is that commercial products like Matlab, ArcGIS, and
SAS provide technical support and are committed to fixing bugs. However, despite these advantages
of commercial software products, there has been a growing adoption of open-source software over
the last two decades, especially in the data analysis and data science communities. Open-source
programming languages have the advantage that a client does not need to purchase a licence for
commercial software to modify code developed for them by consultants. Furthermore, open-source
languages have an enthusiastic and productive community of developers and contributors, who
produce a rich array of packages to accommodate a broad range of analyses. Note, however, that
user-contributed packages can present potential pitfalls as discussed in the section Background
Information on R.

A number of open-source languages provide access to a broad range of the analytical procedures
required in watershed analysis within a single platform, which can streamline the workflow for
complex projects and thus provide time and cost advantages over approaches that require data to
be transferred among different software applications. Data analysts currently appear to favour the
R, Python, and Julia languages. Although the authors advocate the use of R, it is acknowledged that
Python, Julia, and other open-source languages can be viable alternatives and have distinct advantages
over R for specific purposes. For example, Python has an easier-to-learn syntax than R, and is
considered by many to be superior for development of applications and especially for server-level

Why Watershed
Analysts Should Use a
Programming Language

02

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

operations (DataCamp Team 2016). Julia also has a simpler syntax than R, and stands out by virtue
of its processing speed, which can rival those of Fortran and C on some benchmarks (Julia Language,
n.d.). The strength of R derives from its rich capabilities in statistical analysis and visualization of
data, especially for the time series and geospatial data that watershed analysts work with on a regular
basis. The senior author and his research students have found that R, in conjunction with the open-
source SAGA GIS package, provide all the functionality required for almost all of their watershed-
related research needs.

Hutton et al. (2016) called for the hydrological community to move toward integrated and
reproducible workflows through the use of reusable code to increase the credibility and integrity of
research results. The use of an open-source programming language, like R, which allows integration
of a complete workflow—from data compilation and processing to analysis or simulation, and then to
reporting—can play a critical role in this process.

R was developed by Robert Gentleman and Ross Ihaka of the University of Auckland. It was based
on the S language developed by John Chambers at Bell Laboratories, which formed the basis of the
commercially developed S-PLUS package. Much of the code written under S will run with no
changes in R.

R is a Gnu’s Not UNIX (GNU) project, and is available for free under the GNU General Public
License. R is currently developed and maintained by the R Development Core Team. For more
information, refer to the R project home page (http://www.r-project.org/).

The R language is built around a set of packages, which are collections of functions and defined
data types to perform specific tasks. Packages can also contain data sets that can be used to test or
demonstrate R programs without reading in data from an external file. The default installation, often
called “base R,” includes more than a dozen packages, including base (which provides data types and
functions for fundamental operations such as file input/output, calculations, looping, and conditional
execution), stats (with functions for descriptive statistics, linear and nonlinear statistical models, time
series analysis), graphics (data visualization), and datasets. The datasets package contains a variety of
data sets, such as a digital elevation model of Auckland’s Maunga Whau volcano, passenger miles on
commercial U.S. airlines, and speed and stopping distances of cars.

A strength of R is that a plethora of user-contributed packages is available to provide access to a rich
variety of functions and data types for data processing, analysis, and visualization. However, this
strength can also pose potential pitfalls. For example, in many cases, more than one package may
provide similar functions, and there is no clear authority to provide guidance as to which package
is superior. Also, there is no systematic process for verifying the accuracy and reliability of user-
contributed packages. Even base R has known issues, as listed in the “R inferno” website.

The R language supports conditional execution (if statements), loops (for, repeat, and while
statements), and functions. The syntax of R is somewhat like C; for example, it uses curly braces (“{“
and ”}”) to indicate the beginning and end of a block of statements. One limitation to the use of R as
a general-purpose programming tool is that it is an interpreted language and thus will not execute as
quickly as a compiled language like Fortran or C++. In particular, R code that involves loops
runs slowly.

In many cases, the use of loops can be avoided by taking advantage of “vectorized” code. For
example, suppose an analyst had streamflow time series measured at two locations along a stream,
and wanted to compute the incremental contribution to discharge between the two locations. One
approach would be to “loop” through all time intervals, compute the difference at each time interval,
and then store it in the appropriate location in a vector, as in the following code fragment:

for (i in 1:n) Qinc[i] <- Qds[i] – Qus[i]

Background Information
on R

R as a Programming
Language

03

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

where the operation on the right-hand side is applied element-wise within the vectors.

Many analyses involve what data scientists call “split-apply-combine” operations (Wickham 2011).
For example, a watershed analyst may have daily rainfall data for a number of years at a number
of stations, and may wish to compute annual summaries (e.g., totals or maxima) for each station-
year. One approach would be to write code that “loops” over each year and then over each station,
computing the summary value within each iteration and storing it in a variable. A faster, more
elegant and easier-to-read approach is to use the aggregate() or one of the apply() functions within
base R or one of the more recently developed functions in the contributed plyr and dplyr packages.
These functions apply a built-in or user-defined function to each defined subset within a data set,
with the output being a data object that contains the results.

In some cases, the use of loops is unavoidable. For example, when computing a soil moisture
balance through time, the calculation at a given time step involves the soil moisture at the end of the
preceding time step, as in the example code:

where SM[i] is the soil moisture content at the end of time interval “i” and P[i], ET[i], and D[i] are
the precipitation, evapotranspiration, and drainage during that interval. In these cases, options for
speeding up R code are to use the compiler package, which compiles code at run-time, or to use the
inline package, which allows the inclusion of code written in C, C++, or Fortran within the R code.
The foreach package provides functions for looping that can be faster than standard for loops. If you
are using a computer with multiple processors, foreach can significantly reduce run-time execution
by supporting parallel execution of for loop statements.

The stats package in base R includes a broad range of built-in functions for both descriptive and
inferential statistics. For descriptive statistics, commonly used functions include mean(), sd()
(standard deviation), fivenum() (minimum, lower hinge, median, upper hinge, maximum), and
quantile() (to compute specified percentiles). The stats package also has a rich set of functions for
statistical modelling. For example, the lm() function can fit a linear model for a numeric response
variable based on one or more predictor variables, which can be numeric, factor, or a combination.
Thus, lm() can be used for linear regression (simple and multiple), analysis of variance, and general
linear modelling. There are also functions that facilitate more advanced statistical modelling, such
as nonlinear least squares regression via the nls() function and generalized linear modelling via the
glm() function. Generalized linear models can accommodate response variables that are not normally
distributed, and include logistic regression, in which the quantity to be predicted is a binary variable,
such as the presence/absence of an aquatic species.

The stats package also contains useful functions for time-series analysis. The acf() and pacf()
functions can generate autocorrelation and partial autocorrelation plots for a single time series,
and the ccf() function generates cross-correlation functions for a pair of time series. The arima()
function allows time series to be modelled as autoregressive integrated moving average processes. In
addition to the modelling of a univariate time series, the arima() function can accommodate external
regressor variables, so the function can be used to fit regression models that can address issues like
autocorrelated residuals, which violate the assumptions underlying ordinary least squares regression
(e.g., Guenther et al. 2014).

for (i in 2:n) SM[i] <- SM[i-1] + P[i] – ET[i] – D[i]

R for Statistical Analysis
and Modelling

where “i” indexes the time interval, “n” is the number of time intervals, “Qinc” is the name of
the vector holding the computed discharge increment, “Qds” and “Qus” are the names of vectors
containing the downstream and upstream discharge series, and “<-” is an assignment operator. An
equal sign (“=”) can also be used for assignment but is not favoured by the general R community for
historical reasons. An alternative, much faster approach is to code the operation as follows:

Qinc <- Qds – Qus

04

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

In addition to packages in base R, a plethora of user-contributed packages contains functions for just
about any form of analysis you could imagine. For example, the rpart package contains functions for
fitting classification and regression tree models. This form of model is useful when the phenomenon
to be predicted is a categorical variable and the predictor variables are numeric. The lme and nlme
packages support the application of mixed-effects models, which can accommodate spatial and/or
temporal autocorrelation in the residuals, both of which commonly occur in environmental data sets.

It is important for users to be aware that many statistical functions in R will return results that are
different from those generated by a statistical package like SAS. For example, when using the lm()
function for analysis of variance, R returns what are called Type I or incremental tests rather than
Type III or marginal tests, as generated by SAS. In particular, different results will be obtained using
lm() depending on the order in which the factors are listed in the model specification. Another
example is the convention by which the arima() function returns the estimated mean as the estimated
intercept. It is fundamental that, no matter what statistical package is being used, the onus is on the
user to understand how the package performs and reports a test, and to ensure that analyses are
undertaken and interpreted correctly for each specific application. When moving to R from another
analytical software package, it is recommended to run parallel analyses in both to ensure consistency
of results.

Three main packages are available for graph production within R: the default graphics package
(commonly called base graphics), lattice graphics, and ggplot2. All can generate standard graphs
such as histograms, scatterplots, and contour plots, as well as a broad range of more complex graphs,
and all allow a high level of customization. However, the packages differ fundamentally in their
underlying approaches.

The base graphics package applies a traditional pen-on-paper plotting strategy, in which commands
are used to draw specific sets of points, lines, shapes, or text in specific locations within the plotting
frame. Even for a single graph panel, several function calls are often required to create a complete
graph with legends, especially when multiple data series are plotted.

In lattice graphics, a plot is generated using a single function call, with all customization handled by
parameters within the call. A powerful feature is the ability to generate “conditioning” plots to explore
how a relation between two variables or a frequency distribution varies among subsets. For example,
one could generate histograms of daily rainfall or a plot of air temperature versus elevation by month
of the year.

The ggplot2 package is based on the “grammar of graphics” concept developed by Wilkinson (2005).
Rather than building a graph based on individual graphic components, as in base graphics, ggplot2
builds a graph in layers with function calls operating at a high level of abstraction. To build a plot,
the user specifies a data frame (i.e., the data set to be used), aesthetic mappings (e.g., which variables
correspond to the x and y axes, and the use of colour and/or size of symbols to represent additional
variables), delineation into facets (for plots conditioned by subsets), geoms (points, lines, and shapes
to be plotted), stats (transformations, including binning for histograms), and scales (e.g., relating
colours to values of a variable). The ggplot2 package is particularly useful for exploring multivariate
relations within a data set.

R is probably best known for its statistical and graphing routines, but it also includes a broad
range of functions for general computation and numerical analysis and simulation. In particular, it
provides a comprehensive set of functions for arithmetic, trigonometry, logarithms, and probability
distributions, and for matrix algebra, such as matrix inversions.

Base R contains functions for random number generation, root finding, and optimization. User-
contributed packages also provide functions for solution of differential equations. For example,
the deSolve package provides solvers for initial value problems that involve ordinary differential
equations, partial differential equations, differential algebraic equations, and delay differential
equations, whereas bvpSolve can be used to solve boundary-value problems for ordinary differential

R for Data Visualization
and Graphical
Presentation

R for Computation,
Numerical Analysis,
and Simulation

05

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

In base R, various functions can read in data from several formats. For data stored in text files,
relevant functions include read.table(), read.csv(), and read.fwf() (the latter for fixed-width formats).
The result of these functions is a rectangular object called a data frame, in which each variable is a
column and each row is a case. Within a column (variable), all values should be the same type, either
numeric, character, or factor. Numeric variables include both integers and real numbers; character
variables are character strings (such as sampling site name); and factors are categorical variables,
which could be coded either as numeric (e.g., site number) or as a character (e.g., site name). Users
should be aware that, unless specified otherwise, any column in which any of the entries is non-
numeric will be interpreted as a factor variable when using the base R functions for reading files. In
some cases, this can create problems if the user tries to treat it as a character. The solution is to coerce
the variable to a character using the as.character() function.

Watershed analysts frequently work with time series. When reading in a data set, dates and date-
time variables can be coded for input in a variety of ways. One is to code each part (e.g., year, month,
day, hour, minute, second) as a separate numeric variable, then create an International Standards
Organization (ISO) date-time variable using the ISOdatetime() function. Alternatively, one could
code a date-time variable as a character string such as “2005-12-4 11:00:00” and then create an ISO
date-time variable using the strptime() function. In addition to the date-time functions in base R, the
lubridate package provides a consistent set of functions for easier handling and manipulation of date-
time variables.

Functions are available in base R or in user-contributed packages that allow data to be read from
a broad number of specialized file formats, including Excel spreadsheets (as CSV files), GIS shape
files, files from statistical packages (including SAS, SPSS, and SYSTAT), and relational databases.
For example, the RMySQL package provides functions that allow R to connect to and extract data
from a MySQL database. The XLconnect package provides functions to allow users to read and write
Microsoft Excel spreadsheets. R also supports data input from NetCDF files, which allows access to
large-scale, gridded atmospheric data sets. In addition, R can output data in a number of formats that
correspond to the input file formats used by a range of software packages.

Hydrologists rely heavily on spatial data sets and GIS analyses, and R can be an important part of the
spatial analysis toolkit. For example, the sp package provides data classes and methods for handling,
processing, and displaying spatial data; the raster package facilitates analysis and visualization of
gridded spatial data, such as raster GIS layers, remote sensing imagery, and digital elevation models;
maptools supports the reading, writing, manipulation, and display of shapefiles; and gstat provides
functions for geostatistical analysis, such as fitting of variograms and spatial interpolation via inverse-
distance weighting and kriging. These are just a sample of some of the more popular R packages that
are available for spatial data analysis.

Packages are available for working with internet mapping applications. For example, the ggmap
package provides a powerful interface to the OpenStreetTM and Google MapsTM application
programming interface, which allows users to use geospatial data sets within R as part of their data
visualizations. The plotKML package supports the plotting of spatial data in Google Earth by creating
*.kml and *.kmz files.

Looking beyond R, packages have been developed to leverage the power of other languages and
applications. For example, the RPyGeo package provides access to (virtually any) ArcGIS geoprocessing
tool from within R by running Python geoprocessing scripts without writing Python code or touching
ArcGIS (although both Python and ArcGIS must be installed on the user’s system). The spgrass6
package provides a similar way to run the GRASS GIS from within R. Many watershed scientists use

Spatial Analysis
and Mapping

Data Input and Output

equations. Leach & Moore (2015) programmed a coupled hydro-thermal model for headwater
catchments in R by framing the model as linked sets of differential equations. The model setup,
pre-processing, and post-processing were all coded in R, with a call within the R script to a deSolve
function that solves the model differential equations, which were coded in Fortran (but note that
deSolve can also link with C or C++).

06

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

Although it is possible to create time-stepping hydrologic models within R (e.g., Moore et al. 2012;
Leach & Moore 2015), the R programming language is not an ideal model-coding platform, except
perhaps for testing prototype code. A better approach would be to work with a flexible modelling
platform such as the Raven hydrological modelling framework (Craig et al. 2015) or Cold Regions

Table 1. Brief descriptions of a sample of contributed R packages of particular interest to hydrologists.

Package Name

EcoHydRology

hydroTSM

TUWmodel

nsRFA

seas

Lmoments

evd

lfstat

spei

waterData

extRemes

Examples of functions provided

Hydrograph separation; functions to assist in setting up and calibrating the
SWAT2005 hydrologic model; calculation of solar and longwave radiation,
evapotranspiration, and surface energy balance; a model to simulate snowpack
water equivalent at a point; a lumped model to simulate streamflow based on the
saturation-excess runoff generation mechanism

Management, analysis, interpolation, and plotting of time series used in
hydrology and related environmental sciences; this package is highly oriented to
hydrological modelling tasks.

Lumped catchment hydrology model based on the Swedish HBV model

Tools to perform unsupervised regional frequency analysis of hydrologic data
using the index-value method

Tools for analyzing and visualizing seasonal variations in environmental time
series data; functions for parsing Canadian Climate Centre data files

Estimates L-moments and trimmed L-moments from data

Functions for analysis of extreme value distributions

Functions for low-flow analysis based on World Meteorological Organization
Operational Hydrology Report No. 50 (1999); functions for low-flow frequency
analysis, recession analysis, flow duration curves, and baseflow separation

Calculation of standardized drought indices; functions for computing potential
evaporation based on Hargreaves, Penman, and Thornthwaite methods

Access to U.S. Geological Survey daily flow data and anomaly calculation

Tools for extreme value analysis

07

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

Table 1 provides brief descriptions of a sample of packages that are useful for conducting hydrologic
analyses. Rigon (n.d.) provides links to and descriptions of many of these packages.

Hydrologic Analysis
and Modelling

the SAGA GIS application, which is an open-source raster-based GIS written by geoscientists (Conrad
et al. 2015). It is fast and powerful, and includes robust routines for watershed delineation. Use of
the RSAGA package allows SAGA commands to be run from within an R script, thereby facilitating
automation. A script for using R and RSAGA to delineate watershed boundaries is available at http://
ibis.geog.ubc.ca/~rdmoore/Rcode.htm.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

The R software can be downloaded via the Comprehensive R Archive Network (CRAN) (https://
cran.r-project.org/). In addition to the software, CRAN provides access to manuals, FAQs, and the
R Journal.

Many resources that are suitable for beginner and novice R users are available online and through
textbooks. A free online interactive learning tutorial for R is available at O’Reilly’s Code School
website called Try R (http://tryr.codeschool.com/). There is also an offline course for learning R
programming and data science using the swirl R package (http://swirlstats.com/). The R Core Team
also maintains an introductory manual to discuss the basic syntax, graphics, and architecture of R
(Venables et al. 2016). Online sites, such as R-bloggers (https://www.r-bloggers.com), keep users
current with news and tutorials from more than 600 contributing authors.

Perhaps the most important thing for novice users to familiarize themselves with is the R code style
guide and conventions. The inherent elegance and flexibility of R can also be its main weakness.
Novice users can develop poor habits that can make it difficult to interpret program logic or
operations and share code with others. The authors recommend that users review Hadley Wickham’s
Advanced R style guide (http://adv-r.had.co.nz/Style.html) and Google’s R style guide (https://
google.github.io/styleguide/Rguide.xml) to familiarize themselves with typical R programming
conventions and to establish a consistent programming style.

The most popular way to work with R is within R Studio (www.rstudio.org), which is an integrated
development environment for R that is available for most operating systems. There are other
solutions for working with R using text editors (such as Notepad++, emacs, sublime, or vi), but
unless users have a proficiency and love for text editors, the authors recommend using R Studio over
other solutions. R Studio supports the use of R Markdown.

Inevitably, users will encounter a bug or error for which no immediate solution can be found. Sites
such as Stack Overflow (http://stackoverflow.com/questions/tagged/r), R Seek (http://rseek.org/),
and Google can be used to search the World Wide Web for solutions. The R community supports
mailing lists (https://www.r-project.org/mail.html), where users can post questions and receive help

How to Get Started

For users of the LaTeX document preparation application, the sweave function within the base
installation allows users to embed R code within a LaTeX source file. The R code is run each time the
LaTeX document is compiled. Thus, for example, rather than inserting a figure as a graphic file or a
table as a text object, one inserts the R code for creating the figure or table, which allows for automated
updating of documents if data or analyses change. Sweave can also be used within OpenOffice
documents and HTML files but not Word documents.

Another valuable reporting tool is R Markdown, which is a markup language in which content,
formatting codes, and R code are incorporated into text files. Unlike markup languages like HTML,
in which formatting is controlled by tags inserted into the text, R Markdown uses less obtrusive
formatting codes that are more intuitive and easier to learn. Like sweave, R Markdown allows
the creation of dynamic documents, in which graphs and tables are updated automatically when
the document is processed. R Markdown allows the generation not only of pdf and OpenOffice
documents, but also Word documents, HTML files, slide presentations, and other formats.

R for Reporting
and Presentation

Hydrological Model (CRHM) (Pomeroy et al. 2007), using R to pre-process spatial and temporal data
for model input. For example, the WATCHr package generates meteorological forcing data files for
input to CRHM based on gridded re-analysis data products (Shook 2015).

R can also be used as a “wrapper” to automate model setup and execution. It can be especially useful
for model calibration within a generalized likelihood uncertainty estimation (GLUE) framework, in
which a model is run multiple times with different parameter sets, with all sets that achieve a specified
performance standard being adopted as part of a “behavioural” family. For example, Jost et al. (2012)
used R as a wrapper to conduct a GLUE-type calibration of the HBV-EC hydrological model for the
Columbia River catchment upstream of the Mica Dam.

08

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

Three examples are provided to illustrate applications of R for watershed analysis. The associated
Figures 1, 2, and 4 were generated using base graphics; Figure 3 was generated using ggplot2. The code
for these examples can be accessed at http://www.geog.ubc.ca/~rdmoore/Rcode.htm

Examples

09

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

from a very supportive user community. Stack Overflow provides similar functionality. With all
posts to an online community for help, it is important to be concise, include reproducible examples,
and use an informative subject line regarding the question at hand.

Figure 1. Frequency analyses of annual extreme rainfall intensities at Nanaimo Airport weather
station (Nanaimo A) for durations ranging from 5 minutes to 24 hours. T is the return period. Fitted
lines and confidence limits were computed using the method of moments.

Intensity-Duration-Frequency Analysis of Rainfall Data
Hydrologists are often called upon to analyze extreme rainfall events. The standard approach is
to compute annual extreme rainfall intensity series for a range of durations, from as low as 5 or
10 minutes up to 24, 48, or 72 hours. For each duration, a Gumbel Extreme Value Type I distribution
is fitted to the annual extreme series to estimate the intensities associated with specific return periods,
typically 2, 5, 10, 20, 50, 100, and 200 years. The distributions for each return period are typically
plotted on special “Gumbel paper” on which the abscissa is scaled so that data drawn from a Gumbel
distribution should fall approximately along a straight line. It is relatively straightforward to generate
such a plot within R. It is also common to summarize the full intensity-duration-frequency (IDF)
analysis on a single graph with double-logarithmic axes; however, the abscissa, which represents the
duration, has a change in units, from minutes for shorter durations to hours for longer durations.
Again, it is relatively straightforward in R to format such an axis. Figures 1 and 2 illustrate the results
of an IDF analysis for the Nanaimo Airport weather station on Vancouver Island.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

10

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

Baseflow Separation
In both research and practical applications, hydrologists often need to separate a streamflow
hydrograph into baseflow (slow-response) and stormflow (fast-response) components. Several
methods are available to accomplish baseflow separation. Nathan & McMahon (1990) developed
a robust hydrograph separation method based on the application of a high-pass filter, which has
been implemented in the BaseflowSeparation() function in the EcoHydRology package. For the
example shown in Figure 3, daily streamflow data for Newhalem River near Foss, Oregon (station
identification number 14301000) were extracted from the U.S. Geological Survey National Water
Information System (NWIS) web services. The waterData package provides easy-to-use routines to
extract and clean streamflow data from NWIS.

Figure 2. Intensity-duration-frequency analysis of annual extreme rainfall intensities at Nanaimo Airport.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

Figure 3. Baseflow separation of a daily streamflow record. The black line is streamflow; the red line is
the baseflow.

Watershed Delineation and Mapping
Watershed delineation is one of the few functions that does not have a robust implementation within
R. However, it is possible to use R and RSAGA to process a digital elevation model and generate
catchment boundaries. In the example in Figure 4, the catchment boundaries were generated using
RSAGA, and all other processing and mapping was performed using the raster and sp packages. The
DEM and shapefiles were downloaded from Natural Resources Canada’s GeoGratis site
(http://geogratis.gc.ca/site/eng/extraction).

In summary, R has many compelling features that make it a valuable tool for research and
application in watershed analysis. In fact, many analysts find that they can manage their entire
workflow within the R environment, from data import and processing to analysis, graphing,
and mapping, and finally to generation of reports and presentations. Specific features of value in
watershed analyses include the following:
 · access to a rich variety of statistical procedures, from the common to the exotic;
 · ability to generate almost any kind of graph or map with a high level of control over axes, plotting
 symbols, text, and placement;
 · flexibility in the representation of time for both calculation and graphing;
 · access to a rich set of packages for numerical analysis;
 · implementation of standard programming concepts (loops, conditional execution, and functions)
 to simplify the automation of repetitive tasks;
 · ability to import and export data in a broad variety of formats;
 · availability of packages that are customized for watershed analysis applications;
 · availability of relatively sophisticated GUIs to assist with code development, maintenance,
 and debugging;
 · ability to write your own custom packages and contribute to the R community through CRAN;
 · ability to integrate foreign language code for faster processing (e.g., C, Fortran); and
 · ability to build web-based visualizations and data analyses.
In addition, R is freely available, including all the packages, and there is no need to pay for extra
add-ons.
The major downside to R is the learning curve and the required investment of time to learn how
to use it. After more than 20 years of open-source development worldwide and thousands of

Summary: Pros and
Cons of R for Watershed
Analysts

Figure 4. Map of the area around Squamish, B.C., including the catchment boundary for a stream
temperature monitoring site below Shannon Falls (yellow line), as well as locations of temperature
monitoring sites above and below the falls (Tw) (red circles), location of a weather station located
above the falls (UF Wx) (yellow circle), and Squamish Airport (YOW) (yellow square).

11

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, &
 J. Böhner. 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific
 Model Development 8:1991–2007. DOI:10.5194/gmd-8-1991-2015
Craig, J.R., S. Huang, A. Khedr, S. Pearson, S. Spraakman, G. Stonebridge, C. Werstuck, & C. Zhang.
 2015. Raven: user’s and developer’s manual. Raven Version 2.1. http://www.civil.uwaterloo.ca/
 jrcraig/Raven/Main.html (Accessed August 2016)
DataCamp Team. 2016. Choosing R or Python for data analysis? An infographic. http://www.
 datacamp.com/community/tutorials/r-or-python-for-data-analysis (Accessed August 2016)
Guenther, S.M., T. Gomi, & R.D. Moore. 2014. Stream and bed temperature variability in a coastal
 headwater catchment: influences of surface-subsurface interactions and partial-retention forest
 harvesting. Hydrological Processes 28:1238–1249. DOI:10.1002/hyp.9673
Hutton, C., T. Wagener, J. Freer, D. Han, C. Duffy, & B. Arheimer. 2016. Most computational
 hydrology is not reproducible, so is it really science? Water Resources Research 52:7548–7555.
 DOI:10.1002/2016WR019285
Jost, G., R.D. Moore, B. Menounos, & R. Wheate. 2012. Quantifying the contribution of glacier
 runoff to streamflow in the upper Columbia River basin, Canada. Hydrology and Earth Systems
 Science 16:849–860. DOI:10.5194/hess-16-849-2012
Julia Language. n.d. Julia. http://julialang.org/ (Accessed August 2016)
Leach, J.A., & R.D. Moore. 2015. Observations and modeling of hillslope throughflow
 temperatures in a coastal forested catchment. Water Resources Research 51:3770–3785.
 DOI:10.1002/2014WR016763
Moore, R.D., J.W. Trubilowicz,. & J.M. Buttle, 2012. Prediction of streamflow regime and annual
 runoff for ungauged basins using a distributed monthly water balance model. Journal of the
 American Water Resources Association 48:32–42. DOI:10.1111 / j.1752-1688.2011.00595.x
Nathan, R.J., & T.A. McMahon. 1990. Evaluation of automated techniques for base flow and
 recession analysis. Water Resources Research 26:1465–1473. DOI:10.1029/WR026i007p01465
Pomeroy, J.W., D.M. Gray, T. Brown, N.R. Hedstrom, W.L. Quinton, R.J. Granger, & S.K. Carey. 2007.
 The cold regions hydrological model: a platform for basing process representation and model
 structure on physical evidence. Hydrological Processes 21:2650–2667. DOI: 10.1002/hyp.6787
Rigon, R. n.d. R resources for hydrologists. [blog]. http://abouthydrology.blogspot.ca/2012/08/r-
 resources-for-hydrologists.html (Accessed August 2016)
Sandve, G.K., A. Nekrutenko, J. Taylor, & E. Hovig. 2013. Ten simple rules for reproducible
 computational research. PLoS Computational Biology 9(10):e1003285. DOI:10.1371/journal.
 pcbi.1003285
Shook, K. 2015. Package ‘WATCHr’. www.usask.ca/hydrology/RPkgs/WATCHr.pdf (Accessed
 December 6, 2016).

References

12

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

The authors gratefully acknowledge the comments provided by four anonymous reviewers, which
resulted in significant improvement to the manuscript, as well as the copy editing by Tracey Hooper,
which improved the English expression.

Acknowledgements

contributed packages, R can prove challenging to the novice user. Users of R must invest time to
learn how to, and continue to, use it effectively.
With the increasing availability of “big data” sources such as remote sensing products and gridded
atmospheric data sets, and the growing use of spatially distributed hydrologic simulation models, the
watershed analysis community needs powerful and adaptive tools to manage, manipulate, and model
the vast quantities of data with complex interrelationships that have become increasingly common
in the geosciences. The authors argue that structured programming-based data analysis ensures an
auditable workflow from data extraction to publication, and that the R language currently provides
the functionality required to achieve this goal.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

13

Moore, R. Dan & Hutchinson, David. (2017). Why Watershed Analysts Should Use R for Data Processing and Analysis. http://confluence-jwsm.ca/index.
php/jwsm/article/view/2. doi: 10.22230/jwsm2017v1n1a2.

VO
LU

M
E

1

N
o 0

1 CONFLUENCE
Journal of Watershed Science and Management

Venables, W.N., D.M. Smith, & R Core Team. 2016. An introduction to R. Version 3.3.2.
 https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf (Accessed December 9, 2016).
Wickham, H. 2011. The split-apply-combine strategy for data analysis. Journal of Statistical Software
 40(1):1–29. https://www.jstatsoft.org/article/view/v040i01/v40i01.pdf (Accessed August 2016).
Wilkinson, L. 2005. A grammar of graphics. Second edition. Springer-Verlag, New York.

