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Many quantitative relationships in the environmental sciences, and specifically in watershed science, 
can effectively be modelled using a power-law function. Such relationships are often estimated using 
ordinary least squares regression after linearizing the relationship by log-transforming both the x and y 
variables. Alternative approaches include nonlinear least squares regression and generalized nonlinear 
least squares regression. However, there are some differences in the underlying characteristics of these 
models that can result in the generation of different relationships and associated prediction limits. This 
article provides an overview of the statistical models underlying these approaches, then illustrates their 
application using the R language for an example based on fitting a regional relationship to predict 
flood quantiles from catchment area. 
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Many quantitative relationships in the environmental sciences can effectively be modelled using a 
power-law relationship. Mathematically, a power-law relationship is expressed as y = αxβ, where x and 
y are variables and α and β are parameters. Some examples of power-law relationships in the water-
shed sciences include hydraulic geometry relationships (Gleason, 2015; Eaton & Davidson, 2022), 
drainage basin morphometry (Gardiner & Park, 1978; Brardinoni & Hassan, 2006), relationships 
between glacier volume and area (Adhikari & Marshall 2012; Bahr, Pfeffer, & Kaser, 2015), relation-
ships between sapflow from individual trees and basal area for computing stand-level transpiration 
(Chiu et al., 2016), relationships between suspended sediment concentration and stream discharge 
(Ferguson, 1986; Bywater-Reyes, Bladon, & Segura, 2018), concentration-discharge relationships for 
streamwater chemistry (Basu et al., 2010; Knapp et al., 2020), stage-discharge relationships for weirs 
and flumes (Boiten, 1993), regional analysis of flood quantiles (McCuen, Leahy, & Johnson, 1990; 
Eaton, Church, & Ham, 2002; Northwest Hydraulic Consultants, 2020), paired-catchment analyses of 
streamflow response to forestry (Gronsdahl et al., 2019), relationships between rainfall quantiles and 
duration in intensity-duration-frequency analysis (Moore & Hutchinson, 2017), and fractal analysis of 
snow cover (Shook & Gray, 1997). 

The majority of applications in watershed science and analysis fit power-law relationships using ordi-
nary least squares (OLS) regression after linearizing the relationship by log-transforming both the x 
and y variables, followed by a back-transformation to the original measurement scale by exponentia-
tion. However, as has been documented for decades in the watershed science literature, the back-trans-
formed predicted values will underpredict the mean response (e.g., Ferguson, 1986; Cohn et al., 1989). 
Several bias corrections have been proposed (e.g., Bradu & Mundlak, 1970; Baskerville, 1972; Duan, 
1983). However, simpler methods as recommended by Baskerville (1972) and Duan (1983) may not 
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entirely remove bias (Cohn et al., 1989), while the method developed by Bradu and Mundlak (1970) 
involves an iterative solution. An additional complication of back-transforming from log-trans-
formed values is that prediction limits for new observations will not be symmetric about the pre-
dicted values (Baskerville, 1972). 

McCuen, Leahy, and Johnson (1990) and Chen et al. (2020) promoted the use of nonlinear least 
squares (NLS) regression for fitting power-law relations. One issue that McCuen, Leahy, and Johnson 
(1990) and Chen et al. (2020) did not address in detail is heteroscedasticity of the error variance, 
which occurs when the error variance exhibits systematic variability in time, in space, or in relation 
to the predictor variables. A common occurrence in environmental data sets in which values span 
multiple orders of magnitude is that the variance is not constant (i.e., is heteroscedastic), and typi-
cally tends to increase as the magnitude of the y variable increases. Indeed, one of the benefits of the 
log-log transformation is that it tends to stabilize the error variance for power-law relations, albeit at 
the cost of bias associated with back-transformation. 

Heteroscedasticity can be addressed when fitting a relationship using NLS regression by specifying 
weights for each point used to fit the relationship (Neter et al., 1996). Alternatively, generalized non-
linear least squares (GNLS) can be applied, in which the parameters in a variance function can be esti-
mated as part of the overall model fitting procedure. 

The dominant practice of fitting power-law relationships using OLS regression with log-transformed 
variables likely reflects the fact that most watershed analysts have learned how to apply OLS in an intro-
ductory statistics course, but not NLS or GNLS. In addition, OLS regression is supported in all statistical 
software packages, and can be readily performed in spreadsheet applications. While it is possible to 
implement the NLS algorithm in a spreadsheet application (e.g., using the Solver add-in in Excel), it can 
be challenging to incorporate spreadsheet-based analyses into integrated, reproducible workflows that 
can be applied to data sets that are large and/or contain multiple subsets (Moore & Hutchinson, 2017). 

The R programming language includes functions that facilitate fitting power-law relationships using the 
OLS, NLS, and GNLS approaches and, in conjunction with associated software such as RStudio and 
Quarto, provides an efficient framework for integrated, reproducible workflows (Marwick, Boettiger, & 
Mullen, 2018). A further advantage for watershed science and analysis is that the R language is popular 
for hydrological applications, and a range of contributed packages have been developed specifically for 
hydrologic analyses (Moore & Hutchinson, 2017; Slater et al., 2019). For example, the tidyhydat package 
provides easy, programmatic access to the Water Survey of Canada HYDAT data base (Albers, 2017), 
while the CSHShydRology package provides functions for a broad range of hydrologic applications, 
including catchment delineation and visualization of hydrologic time series data (Shook et al., 2022). 

The objective of this article is to illustrate and compare the use of OLS regression on log-transformed 
variables, NLS regression with and without weights, and GNLS regression for fitting power-law relations, 
with specific reference to functions in the R programming language. The application of these approaches 
is illustrated through a regional analysis of flood quantiles, which is a common approach for estimating 
design floods for ungauged locations. All scripts, data sets, and files used in this analysis and the produc-
tion of the manuscript are publicly available in a repository; see data availability statement for details. 
 

Ordinary least squares regression with log-transformed variables 
The use of OLS regression with log-transformed variables is based on a model with multiplicative 
errors, which can be expressed as follows: 
                                                                                ��=���

���                                                                          (1) 

where єi is a random error term. Taking the logarithms of both sides of equation (1) yields the fol-
lowing expression as follows: 
                                                         �����=���(�) + ����(��)+���(��)                                                   (2) 

which can be expressed in the form of a linear regression model as follows: 
                                                                    ���(��)=�0 + �1���(��)                                                             (3) 

where log(yi) is the predicted value of log(yi), and b0 and b1 are the estimated intercept and slope, 
respectively. It is usually assumed that log(єi) are drawn from a normal distribution and have con-
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stant variance. Under these conditions, єi would follow a log-normal distribution with a variance 
that varies with xi. 

Predictions of yi can be made by back-transforming the result of equation (3) by exponentiation. 
Alternatively, the coefficients of the back-transformed relationship can be estimated as 
                                                                                 �=����0                                                                           (4) 
and 
                                                                                   �=�1                                                                             (5) 
where the hat indicates an estimated value. However, if the error terms єi follow a log-normal distri-
bution, the back-transformed relationship would predict the median response for a given value of x, 
which would be less than the mean response. As mentioned in the introduction, several bias correc-
tions have been derived. For illustrative purposes, back-transformation will be applied here using the 
non-parametric smearing estimator proposed by Duan (1983): 
 
                                                                        ��=1��=1����−��                                                                 (6) 

 
where n is the number of data points used to fit the relation, vi=log(yi), and v̂i is the predicted value 
of log(yi) based on equation (3). The bias correction involves multiplying predictions based on 
equation (3) by cs. The smearing estimate approach can be used for a number of transformations 
applied to the y variable, not just logarithmic; see Duan (1983) for details. 

Nonlinear least squares regression 
In contrast to OLS on log-transformed variables, the model to be estimated using NLS regression is 
based on an additive error model, which can be expressed as 
                                                                             ��=����+��                                                                       (7) 

where yi and xi are the response and predictor variables, respectively, for the ith observation, α and β 
are the “true” values of the power-law parameters, and єi is a random error for observation i, 
assumed to have a mean of 0. The form of equation (7) implies that if one could fix х at a specific 
value, xj, and generate an unlimited number of independent values of y, the result would be a distri-
bution of values that would have a mean or expected value, given by 
                                                                           ��|�=��=����                                                                     (8) 

where E(y|x=xj) is the expected value of y conditional upon x=xj. 

The coefficients α and β are generally not known a priori and must be estimated from the data. The 
fitted model can be expressed as: 
                                                                             ��=����+��                                                                       (9) 

where a and b are estimates of α and β, respectively, and ei is the residual for data point i, computed as 
                                                                      ��=��−��=��−����                                                              (10) 

where ŷi is the predicted value for observation i. Nonlinear least squares regression involves the use of an 
iterative algorithm to find the values of a and b that minimize the sum of squared errors, computed as: 

 

                                                             ���=�=1���2=�=1���−����2                                                     (11) 

If the error terms are independent and normally distributed with constant variance, prediction 
limits can be computed for predictions made for new observations (Neter et al., 1996). In addition, 
the estimated parameters would have the property of being approximately minimum variance esti-
mators as well as being unbiased. 

Nonlinear least squares regression with specified weights 
One concern with minimizing SSE as computed from equation (11) is that it gives all observations 
equal weight. If the residual error variance is heteroscedastic—which is a natural consequence of the 
multiplicative error model seen in equation (1), when working on the original measurement scale—
the resulting parameter estimates would no longer have the statistical properties that hold in the 
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case of constant variance, although they would remain unbiased. This concern can be addressed by 
minimizing a weighted sum of square errors, SSEw, computed as 
 
                                                                   ����=�=1�����−����2                                                          (12) 

where wi is the weight for point i, which should be equal to, or at least proportional to, 1/��2, where 
��2, is the error variance for point i. 

The challenge in applying weighted NLS regression lies in specifying the error variances. While there 
are some situations in which the error variance associated with a given observation might be esti-
mated a priori, for example, when the y value is the mean of a set of random samples, the typical situ-
ation in watershed science and analysis is that error variances will need to be estimated or modelled. 
Neter et al. (1996) discussed some approaches to estimating variance functions. 

Weighted least squares regression falls within the broader scope of generalized least squares (GLS) 
fitting. When weights are estimated from the data as part of the fitting process, which is a typical situ-
ation, the method is called estimated generalized least squares (EGLS) fitting (Gumpertz & Rawlings, 
1992; Letcher et al., 2001). 

A common pattern of heteroscedasticity found in environmental data is a “megaphone” shape that 
occurs when residuals are plotted against the fitted value, such that the magnitude of the residuals 
tends to increase proportionally with the fitted value; this pattern is consistent with the multipli-
cative error model. In this case, it is reasonable to assume that the variance of the error terms for a 
given value of xi is proportional to the square of the expected value (i.e., ��2 will be proportional to 
[E(yi)]2, which can be estimated as ŷi

2). This reasoning leads to an iterative approach involving the 
following steps (Neter et al., 1996): 

Fit the model by applying OLS regression to log-transformed variables; extract the 1.
coefficients and store estimates of a and b as aold, bold. 
Use the predicted values from this initial model to compute ŷi, which are predictions of 2.
the expected values. 
Refit the NLS model using weights computed as ŷi

–2 and extract the coefficients as 3.
(anew, bnew). 
Compare the new and the old coefficients. If the maximum fractional difference is less 4.
than some specified tolerance (e.g., 10-6), consider that the solution has converged; 
otherwise, compute ŷ using the new coefficients, store the new coefficients as (aold , bold) 
and go to step 3. 

The nls function in base R can be used to apply NLS fitting with or without specified weights. While 
the calculation of prediction limits is not currently implemented in the predict method for nls 
objects, prediction limits can be computed using the predFit function in the investr package 
(Greenwell & Kabban, 2014). 

Use of generalized nonlinear least squares  
An alternative to applying NLS regression with explicit iterative estimation of the weights is to apply 
generalized NLS (GNLS) regression, which is provided via the gnls function in the nlme package. In 
this approach, the residual errors are assumed to be independent and normally distributed with a 
mean equal to zero and a variance that is some function of an independent variable(s) x or the pre-
dicted response variable ŷ. Different variance models can be specified through a “weights” argument, 
and all model parameters are estimated via maximum likelihood. 

The weights are generated by a specified variance function such as varFixed or varPower. For 
example, using weights = varFixed(~ area) would generate weights based on error variances that are 
proportional to the variable area. The function weights = varPower( ) with no argument in 
varPower( ) would generate weights based on variances that are proportional to 1/ŷ2t, where t is a 
parameter to be estimated as part of the model fitting. For the multiplicative error model, one would 
use weights = varPower(fixed = list(t = 1)), which computes the weights as 1/ŷ2. 
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In cases in which the errors follow a log-normal rather than a normal distribution, an alternative 
approach to fitting a power-law relationship would be to fit a log-normal distribution to the data 
using maximum likelihood, with the mean expressed as a power-law function of the x variable. 
However, to the author’s knowledge, this approach has not been applied in the watershed science and 
management context and is not discussed further. 

Prediction limits 
In many applications, it is important to quantify the uncertainty in predicted values. If the assump-
tions underlying the fitted model are valid, then prediction limits can be computed for any new ob-
servation for a specified confidence level and used as a measure of precision. For example, if a 
confidence level of 80 percent is used to compute prediction limits when applying a model to make 
predictions for a catchment not used in the model fitting, then there is a probability of 0.8 that the 
interval would contain the new observation. 

OLS on log-transformed variables 
To simplify the notation, the log-transformed regression model can be expressed as v̂i=b0+b1ui, 
where v=log(y) and u=log(x). For OLS linear regression, the lower and upper prediction limits for a 
new observation, uj, can be calculated as 
 

����=��−����1+1�+��−�2∑��−�2 (13) 
and 

 
                                                         ����=��+����1+1�+��−�2∑��−�2                                                (14) 

 
where LPLj and UPLj are the lower and upper limits, respectively, v̂j is the predicted value, tc is the 
two-tailed critical value of Student’s t for the specified confidence level and n–2 degrees of freedom, 
se is the square root of the mean square error for the regression, n is the number of data points used 
to fit the model, and ū is the mean of the values of u used to fit the regression (Neter et al., 1996). 
These equations are based on the assumptions that the error terms are independent, normally dis-
tributed and homoscedastic. 

Prediction limits for OLS regression can be computed using the predict function in base R. The com-
puted prediction limits can then be back-transformed by exponentiation. Note that the back-trans-
formed limits will not be symmetric about the back-transformed prediction of y. 

Fitting by NLS and GNLS 
Equations of the form of (13) and (14) cannot be used for NLS or GNLS fits; approximate methods 
must be used. For example, the predict_gnls function in the nlraa package uses bootstrapping to gen-
erate prediction limits. In contrast, the predFit function in the investr package uses Taylor-series ap-
proximations to estimate the standard errors used to compute confidence limits on the predicted 
mean response and prediction limits for new observations based on NLS fits; see, for example, Chap-
ter 13 in Neter et al. (1996) for more information. For fits that do not involve weights, the predFit 
function can provide lower and upper prediction limits directly. For weighted NLS fits, the se.fit = 
TRUE option should be used; prediction limits can then be computed from the values of se.fit and 
residual.scale that are returned by the function as follows: 
 
                                                            ����,����=��±����,�2+��2/��                                                    (15) 

where the subscript j refers to a new case for which a prediction is to be made, se,j is the standard 
error of the fitted value for case j (taken from se.fit), sr is the value of residual.scale, and wj is the 
weight for case j. For the assumption of multiplicative errors, wj can be approximated as 1/ŷj

2, where 
ŷj is computed as axj

b. Equation (15) is an approximation that is asymptotically valid for large n 
(Neter et al. 1996). 

Diagnostics 
It is conventional to use the residuals from the fitted relationship to assess whether the error terms 
deviate from normality and constant variance (Fox, 2020). For OLS on log-transformed variables, 
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the diagnostics refer to the log-transformed relation, not the back-transformed predictions, and are 
thus not relevant for assessing goodness of fit for the untransformed data. 

For NLS regression without weights, the appropriate residuals are as calculated in equation (10). For 
weighted NLS and GNLS regression, diagnostic procedures should use Pearson residuals, computed as 

 
    ��,�=���� (16) 

where wi is the weight applied to observation i during model fitting (Fox, 2020). Normalized resid-
uals, which are the raw residuals scaled by √var(ei), are also acceptable for diagnostic purposes. 

Fox (2020) provided a comprehensive overview of diagnostic procedures and plots for regression 
models, including approaches to detect influential points and multicollinearity when using multiple 
predictor variables. A parsimonious approach with a focus on the assumptions of normality, homo-
scedasticity, and goodness of fit is outlined in the following paragraphs. 

The assumption of normality can be graphically assessed by plotting a normal quantile plot of the 
residuals. For normally distributed, homoscedastic errors, the residuals should fall roughly on a 
straight line. However, it is not uncommon for a small number of data points at the top and bottom 
ends of a distribution to deviate from a linear pattern in a normal quantile plot, even for data drawn 
from a normal distribution. 

Plotting the residuals against the predicted values can provide information on both the constancy of 
the variance and the goodness of fit of the model form. Ideally, the residuals should have relatively 
even scatter above and below the value of 0, the magnitude of which should not vary with the value 
of the predictions. If the variance of the residuals deviates from this ideal pattern (e.g., displays a 
“megaphone” pattern), then the error variance would appear to be heteroscedastic, and a weighting 
scheme should be explored. If the residuals display a nonlinear trend, such as concave or convex cur-
vature, an alternative model form should be explored. 

Assessment of independence of the residuals depends on the type and structure of the data. For 
example, time series data often exhibit temporal autocorrelation, especially for sub-monthly inter-
vals, which can be assessed using autocorrelation or partial autocorrelation plots (via the acf and 
pacf functions in base R). Mapping residuals for spatial data can help evaluate the presence of spatial 
autocorrelation or trends. Data that can be grouped into categories (e.g., season, region, vegetation, 
hydrologic regime) often exhibit among-group differences in error distributions, which can be 
visually assessed by generating box plots by category. 

Including more than one predictor variable 
It is often appropriate to include more than one predictor variable in a power-law model (McCuen, 
Leahy, & Johnson, 1990; Bywater-Reyes, Bladon, & Segura, 2018; Northwest Hydraulic Consultants, 
2020). For an example with three predictor variables, the model takes the following form when using 
a multiplicative error model: 
                                                                 ��=��1��1�2��2�3��3��                                                         (17) 

where x1i, x2i, and x3i represent the values of three predictor variables for case i, and β1, β2 and β3 are 
the corresponding exponents. Equation (17) could be fit using NLS regression with weights assigned 
as described earlier. For fitting via OLS, the model would be expressed as: 
                                        �����=����+�1����1�+�2����2�+�3����3�+�����                                (18) 

which has the form of a multiple regression model. As with the case of one predictor variable, the 
back-transformation by exponentiation results in a bias. 

For additive errors, a power-law with three predictors could be expressed as: 
                                                                ��=��1��1�2��2�3��3+��                                                        (19) 

The use of multiple predictors introduces the need for more complex diagnostic and model testing 
procedures, which are beyond the scope of this article. Therefore, the focus here is on the case of one 
predictor variable. 
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Description of the data 
This analysis focuses on the relationship between a flood quantile and catchment area, which is com-
monly modelled as a power-law function, in the Canadian portion of the Columbia River basin. The 
flood quantile of interest is the annual maximum instantaneous flow with a return period of two 
years, denoted Q2. Note that this application is intended purely as an illustrative exercise; the result-
ing models should not be applied in a real-world context. 

The analysis includes the set of catchments used in the analysis presented by Moore et al. (2020), 
which were selected based on the following criteria: 1) currently active gauging station, 2) gauging 
station established prior to 1977, 3) unregulated flow, 4) drainage area less than 10,000 km2, and 5) at 
least 36 years of data from 1977 to 2020. Shape files containing catchment boundaries and a file con-
taining metadata about the gauges and catchments are available via an online repository.1 The loca-
tions of the catchments are shown in Figure 1. 

Annual maximum instantaneous flows were accessed from the HYDAT hydrometric database using 
the hy_annual_instant_peaks function in the tidyhydat package. Note that instantaneous peak flows 
were not available for all years of record. The minimum number of years of peak flow values was 18, 
but the rest had 30 to 43 years of peak flow values. 

For each gauge, the two-year flood, denoted Q2, was computed using the fevd and return.level func-
tions in the extRemes package for data from 1977 to the end of the record. Flood frequency curves 
were fit using a generalized extreme value distribution with maximum likelihood estimation. 

As seen in Figure 2, the data indicate a nonlinear relationship when plotted using log-log scales, sug-
gesting the presence of a scale break in the relationship between Q2 and catchment area. The rela-
tionship appears to be reasonably linear in log-log space for areas less than 1000 km2, suggesting that 
a power-law relationship would be valid over that range; the analysis was accordingly restricted to 
that range of areas. 

Fitted models 
As seen in Figure 3(a), the data appear to follow a linear relationship in log-log space for the restricted 
range of catchment areas. The fit appears to be reasonably tight, with r2 = 0.9. Note, however, that this 
statistic is for the log-transformed linear relation, not the back-transformed power law, which appears 
to exhibit substantial scatter, especially in the range from 200 to 600 km2 (figure 3b)). 
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Figure 1. Locations of catchments within the Canadian portion of the Columbia River 
headwaters. The inset map shows the location of the Columbia River basin within the 
Province of British Columbia. 

Case study of regional 
analysis of flood  
quantiles

http://confluence-jwsm.ca/index.php/jwsm/article/view/53/7
http://confluence-jwsm.ca/index.php/jwsm/article/view/53/7
http://confluence-jwsm.ca/index.php/jwsm/article/view/53/7
http://doi.org/10.22230/jwsm.2024v7n1a53


Transforming the predictor variable modifies the leverage of each point used to fit the data and thus 
their influence on the model fit. For example, in Figure 3(a), the data points corresponding to the 
two smallest catchments have leverage values that are more than two times the mean leverage, and 
thus are potentially influential points (Neter et al., 1996). However, for the untransformed data 
shown in Figure 3(b), the point corresponding to the largest catchment is the only one with “high” 
leverage. 

The value of the smearing correction is 1.097; that is, the bias-corrected relationship is about 10 per-
cent higher than the uncorrected relationship. As 
seen in Figure 4, the bias-corrected OLS fit, the 
weighted NLS fit, and the GNLS fit are visually 
similar through the full range of catchment 
areas; however, the unweighted NLS fit deviates 
from the other three, with higher predictions for 
smaller catchments and lower predictions for 
larger catchments. 

Table 1 summarizes the fitted coefficients from 
the various approaches. Note that the bias cor-
rection only modifies the value of a. The 
unweighted NLS fit generated a value of b that is 
about 15 percent lower than the other 
approaches and a value of a that is roughly 
double the other estimates. The GNLS fit with 
weights = varPower() generated a value of t = 
1.029, which corresponds to weights computed 
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Figure 2: Log-log plot of relationship between two-year 
flood and catchment area. The fitted curve is a locally 
weighted scatterplot smoother (loess), with span = 0.75 
and degree = 2. For explanation of loess smoothers, see 
National Institute of Standards and Technology (2012).

Figure 3: Scatterplots of the two-year flood as a function of catchment area with  
(a) logarithmic scales and (b) arithmetic scales. The red line in (a) is the linear 
relationship based on the OLS fit to the log-transformed variables, and the red curve  
in (b) is the back-transformed power-law relationship.

Figure 4: Comparison of the relationships generated by OLS fitting with bias 
correction, NLS without weights, NLS with weights assuming a multiplicative 
error model, and GNLS with weights = ŷ–2t. The left-hand panel shows the full 
data set while the right-hand panel is restricted to catchment areas less than 
150 km2.

http://confluence-jwsm.ca/index.php/jwsm/article/view/53/7
http://confluence-jwsm.ca/index.php/jwsm/article/view/53/7
http://confluence-jwsm.ca/index.php/jwsm/article/view/53/7
http://doi.org/10.22230/jwsm.2024v7n1a53


as 1/ŷ raised to the 2.058 power, which is only 2.9 per-
cent greater than the exponent that is consistent with 
the multiplicative error model. Interestingly, the bias-
corrected OLS fit, the weighted NLS fit, and the GNLS 
fit generated somewhat different values of a and b 
despite the visual similarity of the fitted relationships 
(Figure 4). 

As seen in Figure 5, the fitted relationships and 80 per-
cent prediction limits appear broadly similar for the fits 
generated by bias-corrected OLS, weighted NLS, and 
GNLS, although, as noted earlier, the prediction limits are 
not symmetric around the fitted relationship for the OLS 
fit. The unweighted NLS fit does not account for hetero-
scedastic error variance. Accordingly, the prediction 

limits do not align with the tendency to increasing variance with increasing value of ŷ. The noisy fits and 
prediction limits for the GNLS fit represent variability of the bootstrapping method, which was applied 
for a discrete sequence of xj values. For all fits, it is important to recognize how wide the limits are, even 
for a relatively relaxed confidence level of 0.8 (rather than a more commonly used level of 0.9 or 0.95). 

Figure 5: Comparison of the fitted power-law relationships using four approaches, 
with 80% prediction limits shown as a grey polygon. The GNLS fit is for weights = ŷ–2t. 

Model diagnostics  
Figure 6 shows diagnostic plots for NLS regression without weights and for the GNLS fit with 
weights = varPower() (i.e., weights proportional to ŷ–2t). The variance of the residuals for the NLS fit 
increase with the predicted value, suggestive of a megaphone shape, which indicates a violation of 
the constant variance assumption. The normal quantile plot reveals substantial deviations from lin-
earity in both tails, which suggests that the normality assumption is also violated. Therefore, un-
weighted NLS does not appear to be an appropriate method for fitting a power-law relationship to 
this data set. 

For the GNLS fit, the magnitude of scatter does not exhibit any obvious trends in relation to the pre-
dicted value of Q2. The normal quantile plot indicates that, except for the tails, the distribution 
appears reasonably consistent with a normal distribution. The diagnostic plots for the weighted NLS 
fit and the GNLS fit with t fixed at a value of 1 were similar to those for the GNLS fit shown in 
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Table 1: Summary of fitted values of a and b. 

Notes: GNLS, generalized nonlinear least squares; NLS, nonlinear least squares; 
OLS, ordinary least squares.

Method Weights a b

OLS none 0.0811 1.138

OLS with smearing correction none 0.0889 1.138

NLS none 0.1836 1.007

NLS ŷ–2 0.0838 1.150

GNLS ŷ–2t 0.0791 1.162

GNLS ŷ–2 0.0851 1.147
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Figure 6. Compared with the case for the unweighted NLS fit, the diagnostic plots support the use of 
weights when fitting the power-law relationship. 

 

As outlined in the introduction, power-law relationships are commonly assumed to hold in many 
applications in watershed science and analysis. As demonstrated through this case study, the 
approaches to fitting power-law relationships can differ both in the predicted values and in the esti-
mated prediction limits, and it is important for analysts to examine diagnostic plots to choose the 
most appropriate method for each data set. 

Examination of a scatterplot with logarithmic axes can be a useful first step in fitting a power-law 
relation. If such a plot indicates a deviation from linearity, as was the case for the example used here, 
then it may be necessary to restrict the model to a range in which the data points exhibit a linear 
trend. Alternatively, one could consider a different form of nonlinear model that is more appropriate 
for the data, perhaps including additional predictor variables. 

Many studies that used OLS regression with log-transformed variables to fit a power-law model pro-
vided a value of r2 as a measure of goodness of fit (e.g., Eaton, Church, & Ham, 2002; Adhikari & 
Marshall, 2012; Bahr, Pfeffer, & Kaser, 2015; Chiu et al., 2016; Gronsdahl et al., 2019; Northwest 
Hydraulic Consultants, 2020). However, r2 refers to the goodness of fit in log-log space, and may be 
misleading about the goodness of fit after back-transforming the fitted linear relation, as was 

CONFLUENCE 
Journal of Watershed Science and ManagementVO

LU
ME

 7 

Nº
01 Moore. (2024). Fitting Power-Law Relationships in Watershed Science and Analysis, with an Example Using the R Language. http://confluence-jwsm.ca 

/index.php/jwsm/article/view/53/7 . doi:10.22230/jwsm.2024v7n1a53 10

Discussion

Figure 6: Diagnostic plots for NLS regression without weights (top row, red symbols) and GNLS 
regression with weights = ŷ–2t (bottom row, blue symbols). The left-hand column shows the residuals 
versus fitted values of Q2; the right-hand column shows normal quantile plots. The bottom row shows 
Pearson residuals; see text for explanation. The dashed line in the normal quantile plots passes 
through the 25th and 75th quantiles, and provides a visual reference to assess linearity. 
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apparent from the contrast in fit seen in Figure 3, and as was noted by Northwest Hydraulic 
Consultants (2020). 

In the example presented here, the bias correction represented an increase of about 10 percent over 
the uncorrected relationship. The bias-corrected relationship was visually similar to the weighted 
NLS and GNLS fits, albeit with different parameter estimates. This observation highlights the need 
for caution when the focus of a study is to quantify the value of the exponent—for example, to com-
pare empirical estimates with theoretical values—as argued by Mark and Church (1977) based on 
other considerations. 

In the application of NLS regression with weights and GNLS with t fixed at a value of 1, it was 
assumed a priori that a multiplicative error model was appropriate; the suggestion of a megaphone 
pattern in the plot of residuals versus predicted values for the unweighted NLS fit is consistent with 
that assumption (Figure 6). However, a multiplicative error model may not be applicable in all cases, 
and an alternative model may be needed. In some cases, the choice of variance model might be 
guided by theoretical concerns and/or by interpretion of diagnostic plots. A detailed discussion of 
diagnosing and modelling non-constant variance is beyond the scope of this work, but further infor-
mation can be found in Neter et al. (1996) and Fox (2020). 
 

Four main approaches are available to fit power-law relationships to data: 1) application of OLS 
regression following logarithmic transformation of both the y and x variables, 2) unweighted NLS 
regression, 3) NLS regression with weights, and 4) GNLS regression with weights computed based 
on a variance model that is estimated as part of the model fitting. As demonstrated through the case 
study, these methods can yield different predictive models and prediction limits. Some recommen-
dations for fitting power-law relationships in watershed science and analysis follow. 

When fitting a power-law model, it is recommended that OLS regression on log-transformed vari-
ables should be used primarily as an initial visual check on the appropriateness of a power-law rela-
tionship and to generate starting values for parameter estimates for NLS and GNLS fitting. OLS 
regression on log-transformed variables is implicitly based on a multiplicative error model, which 
may not be valid in all cases; in addition, back-transformed predictions are subject to bias, and back-
transformed prediction limits will not be symmetric about the predicted value, which means that 
expression of uncertainty requires explicit specification of both the lower and upper limits. Further, 
the value of r2 for the OLS regression on log-transformed variables should not be used as an indi-
cator of goodness of fit for the power-law relationship. 

If OLS regression is used to fit a predictive model, back-transformed predictions should be bias-cor-
rected and appropriate diagnostic procedures performed to check that the residuals from the log-
transformed fit (equation 2) are consistent with the assumptions of normality and constant variance. 

It is recommended that NLS, weighted NLS or GNLS be used to fit power-law relations, depending on 
the nature of the error variance as determined empirically by regression diagnostics and/or based on 
theoretical considerations. Where homoscedasticity of the error variance appears to be valid, NLS fitting 
could be used. Where heteroscedasticity is an issue and the variance can be modelled as a function of 
the predictors or the fitted values, GNLS may be preferred to weighted NLS because it does not require 
explicit iteration, and the computation of prediction limits is more straightforward in terms of coding. 

For visualizing the precision of the predictive relation, it is recommended that the data be plotted on 
arithmetic axes, along with prediction limits. Plotting the relationship separately for the lower range 
of values can be useful for interpreting the fit across the full range of data. 
 

All files associated with this study are publicly available via https://zenodo.org/records/10071699. 
 

Professor Val Lemay (The University of British Columbia), three anonymous reviewers, and 
Confluence editor Robin Pike provided detailed comments on earlier versions of this manuscript, 
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